

Monte Carlo studies of energy-energy correlators for \mathbf{D}^0 -tagged jets in pp collisions

Beatrice Liang-Gilman¹

¹Department of Physics, University of California, Berkeley, CA 94720, USA beatrice_lq@berkeley.edu

1. Introduction

EEC Definition

Energy-energy correlators are the energy weighted per jet cross-section of particle pairs and can be calculated as follows:

$$\sigma_{\text{EEC}}(R_{\text{L},\text{ij}}) = \sum_{i,j} \int dR'_{\text{L}} \frac{p_{\text{T},i} p_{\text{T},j}}{p_{\text{T},j\text{et}}^2} \delta(R'_{\text{L}} - R_{\text{L},\text{ij}}) \quad (1)$$

2. EECs in Heavy-Flavor Jets

- Confinement region clearly separates perturbative and nonperturbative regions
- Allows us to probe partoniclevel jet formation and how partons are confined into hadrons

(2)

3. Method

In this study, we used Monte Carlo simulations to look at the energy-energy correlator distributions.

4. EECs from Different Partons

*R*_L *R R*_L *R*_L *R*_L<

jets EEC is broader than quark jets $EEC \rightarrow Larger$ color factor

5. D^* Meson Contribution to D^0 jet EECs

The charm quark can fragment into a D^0 meson in multiple ways. 1. Directly into a D^0 , where

 $c \to \mathrm{D}^0 \to \mathrm{K}^{\pm} \pi^{\mp}.$

1S

 $c \to \mathbf{D}^{*\pm} \to \mathbf{D}^0 \pi^{\pm} \to \mathbf{K}^{\pm} \pi^{\mp} \pi^{\pm}.$

6. Probing Charm Hadronization with MC Models

 \diamond Qualitatively, all models match in shape at lower and higher R_L

 & Models differ quantitatively in the peak position and peak amplitude \rightarrow dominated by hadronization mechanisms

Summary and Outlook

Mass hierarchy visible in peak positions of heavy flavor EECs
D* decay observed in low R_L (i.e. non-perturbative/hadronic) region
Comparisons of different Monte Carlo models show that EECs are sensitive to hadronization mechanisms
pp measurement of D⁰-tagged EECs has been made in ALICE!
Future work includes analyzing ALICE Run3 and Pb-Pb data