SUBA-Jet, a new coherent jet energy loss model
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To get both hydrodynamic IS and
initial hard partons from preferrably
the same initial state,

make hydrodynamic and jet parts talk
to each other, add hadronization
scheme and jet finding.
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Time-like parton shower + spacetime picture
@ Monte Carlo simulation of DGLAP equations for a parton shower between virtuality scales

()+ (from Born process in hard scattering) and ), = 0.6 GeV.

On top of that:

@ The time evolution is split into
timesteps (ideal for merging with
nydrodynamic medium evolution)
Parton splitting (for high-Q)* partons)
nappens with a probability according to
mean life times between the splittings

At = E/Q>.
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Medium modifications: high Q% sector

dQ?

We adopt effective treatment from T. Renk, Phys. Rev. C78 (2008) 034908: ke q(T, p)

(T, p) = qier(T) X qeof(p), the latter from Gossiaux, Aichelin, Phys. Rev. C 78 (2008) 014904.

There is a small continuous virtuality increase, which causes more splittings, leads to a wider jet
with some apparent energy loss.

Alexander Lind?!, lurii Karpenko?®, Joerg Aichelin?, Pol Gossiaux?, Martin Rohrmoser

2 CNRS/SUBATECH Nantes, ® FNSPE CTU in Prague, * Jan Kochanowski University

102:\ : ———r] : —— T : ———rr 0.20: T T T T T ]
E .\.\ Vac., Eini — 10 GeV ; — Vacuum, Eini =10 GeV
- '\.\ Vac., Eini = 50 GeV VaCUTum, Eini =50 GeV
& '~ e Med., Ei; = 10 GeV o5t =1 T Medium, Bini =10 GV
Z 10 - Med., Bii =50 GeV § & > — = Medium, Eini =50 GeV
S _— L
= 2 010 | - -
3 S :
s 10 5 I_
CB;' ; L E__ '_--l' B . -
S 0.05 | | o —a
Pt T
—1 —_ . . 'h__‘_.
el el il 1 epTT e e
1072 107" 10° 10 0 5 10 15 20 25 30
¢ [fm/c] Number of parton splittings
2 ] . .
low ()° sector: elastic scatterings
t—channel, IR-regulated
—> > d2031q<q> 20r o . d*c®?  Cyd*c?
2 2 2\2 2 2 ’
d*qr N. (gp + p?) d*qr  Crdsgr

p? = /@'mQD |Gossiaux, Aichelin, Phys. Rev. C 78 (2008) 014904], x = 0.16.

@A) ina

0.42

with 7. = 0.15 GeV.
In (115 +0.647 )

Y
Y

as,eﬁ(T)

)

Medium-induced radiation: single (incoherent) radiation process

¢

ﬁfii Basic idea: Gunion, Bertsch '82
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’ Extension for heavy quark projectile and dynamical light quarks:
A Aichelin, Gossiaux, Gousset, Phys. Rev. D89, 074018 (2014):
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In the region of small x, the matrix elements from QCD can be approximated by so-called scalar
QCDwhich at high energy leads to a factorized formula for the total cross section of the radiation
process:
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Summary: a building block of a new jet+medium framework SUBA-Jet

@ We've constructed a Monte Carlo implementation of coherent radiative enegry loss.
Radiation seed is based on Gunion-Bertsch = massive quarks/gluons.
n a benchmark setup, BDMPS-Z and GLV limits are reproduced.

n a more realistic setup, considerable deviations from BDMPS-Z even in static medium.

One way to state the reason is that there is no clear separation of scales:

E > w > k7 in theory, but in practice they may and do overlap.
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Medium-induced radiation is actually coherent
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One expects to have three regimes:

@ GB: Gunion-Bertsch regime,
Incoherent radiation

@ BDMPS-Z: radiation from
" multiple coherent scatterings
@ GLV: radiation with a single hard

scattering

The Monte Carlo algorithm for coherent radiation block

[Virtual incoherent gluon formation according to GB seedj

(Ns =109 =0

[Evolve one timestep A t} A\

Gluon phase accumulation
P—> 9+AQ

[Stiu in medium (T > TC)?j

o)

Yes

SECD

[Elastic rescattering?j

[NS — Ns + 1 update kj—»

A4
Accept gluon with
probability 1/ Ns

o For low-Q)? partons: at each timestep, an
elastic scattering and/or a radiation of
pre-formed gluon happens with a probability
R At, Rt respectively.

@ Each parton can generate arbitrary number
of pre-formed gluons (ocblob).

@ We adopted a variant of the faithful
implementation of the BDMPS-Z by Zapp,

| Yes
A4

Stachel, Wiedeménn, JHEP 07 (2011), 118
»| Add virtual gluon as radiated/realised

[Discard virtual gluon}

>[Adjust projectile kinematics accordinglyj

Coherent radiation benchmark
1) 100 TeV jet, a proxy for £ — oo limit.
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E =100 TeV, L =4 fm
T =400 MeV, Ap = (2Pg-k/Eqg)At
mgq — 00, Emergy conservation

o BDMPS-Z
107°F - . awv
—— SUBA-Jet, after LPM evolution, (N,) = 3.462(3)
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(Caron-Huot, Gale, 2010; Mehtar-Tani, 2019)
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Setup:

T =400 MeV, o, =04

o~ 0.44 GeV, my™ = 0.626 GeV,
mgherm = 0.367 GeV, A\’ = 0.18 fm, and
MY = 0.08 fm.

@ LPM modifies radiation spectrum at all
scales
(BH behaviour not present at small w - too
dense medium)

o At large w, GLV limit is reproduced.

@ A very strong LPM suppression:
out of 300 virtual gluons only 1% become
real radiated gluons.

Relaxing BDMPS-Z assumptions
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Path length dependence of radiative energy loss

In both BDMPS-Z mimicking (left) and rea

istic (right) cases, the pathlength dependence is:
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