

Study of Neutron Irradiation of p-type Silicon Sensor for future calorimeter co-Author:

Nara Women's University, Japan: Yuka SASAKI

CO-AULTIOI : M. INABA, T. CHUJO, Y. GOTO, T. KOBAYASHI, Y. WAKABAYASHI, J. PARK, T. INUKAI, K. OKUJ, S. ITO, K. YODA, A. TAKETANI, S. SAKAI, T. HACHIYA, M. SHIMOMURA, M. TAKAMURA, Y. ISHIGAKI, M. HATSUDA

1. Future forward Calorimeter

- Newly developed to measure CGC.
- Will be installed in forward region from the point of the collision
 - Due to high neutron exposure, p-type silicon sensor will be used which are known for high radiation tolerance

The more exposed to radiation, the more their characteristics change rapidly.

→Need to know what happens if they are exposed to the amount planned for the experiment

2. Neutron Irradiation test at RANS Neutron

Neutron irradiation was performed in 10 runs.
 Irradiation amount[C] = current[μA] × time[sec]

Run No.	1	(6)	2~10
time[sec]	3600	450	25707
current[µA]	4.001	30.691	32.160 Average
amount[C]	0.0144	0.0138	0.8673 Total

- The indium foil was placed in Run1 and Run6 only.
- Compare Run1 and Run6 amount,
 1.12 times larger than Run6.
- Neutron dose should be proportional to amount[C].

3. Evaluation of Neutron dose

- The neutrons strike indium foil, which moves to the excited state and then to the ground state by emitting γ-rays at 336 keV. (isomeric transition)
- The neutron dose is proportional to the γ dose.

Number of neutron: N

$$\mathbf{N} = \frac{1}{\sigma} \cdot \frac{\lambda M t_i}{mRN_A B_{\gamma} \varepsilon_{cap} (1 - e^{-\lambda t_i}) e^{-\lambda t_c} (1 - e^{-\lambda t_m})} \cdot \mathbf{A}$$

A: number of γ-rays

Measure method of y-rays

- Fit with Gaussian+BG (Expo or pol1) function at around this peak (correspond to γ-rays).
- The γ-ray dose within the measurement time:t_m of the indium foil is obtained by integrating

4. Result: Neutron dose

- For the indium foil located in the center, there was a decrease in depth direction.
- But cannot be seen a decrease in the 4th and 5th layers.
- The indium foil located in the center of the 1st layer of Run6 shows the expected neutron dose.

5. Summary

- In order to evaluate the performance of p-type Si sensor, Neutron irradiation test was conducted at Riken RANS.
- Decrease should be seen in depth direction, but it could not be seen between the 4th and 5th layer.
- The indium foil located in the center of the 1st layer of Run6 shows the expected neutron dose.