Initial state and Early time dynamics

Hidetoshi Taya

Keio University

Rich & important physics in the early-time dynamics of HIC

- gluon saturation (color glass condensate)
- strong color field (glasma)
- strong EM field

provide opportunity to study "new physics"

origin of the QGP in HIC

Rich & important physics in the early-time dynamics of HIC

✔ **▲** & **■** : well understood

✓ 🗖 & 📕 : well understood

✔ **▲** & **■** : well understood

✓ 🗖 & 📕 : well understood

- elliptic flow

✓ 🗖 & 📕 : well understood

- elliptic flow
- jet quenching

- elliptic flow
- jet quenching
- quark # scaling

✓ 🗖 & 📕 : well understood

- elliptic flow
- jet quenching
- quark # scaling
- J/ ψ suppression

(* will be studied further with EIC)

- elliptic flow
- jet quenching
- quark # scaling
- J/ ψ suppression
- thermal photon

- ...

🗸 🗖 & 📕 : well understood

Image: No established physics picture nor theory

- Many open questions, e.g.,
 - How are the huge number of quarks & gluons produced dN/dy=O(1000)?
 - How do they thermalize/hydrodynamize to form the liquid-like QGP?
 - How to explain the "early thermalization" O(1fm/c), indicated by exp data?
 - How to make a more realistic initial condition for hydro?
 - How to probe the early time experimentally?
- But had a lot of progress in the last decade !

Strong color field (glasma) is the key

Strong color field (glasma) is the key

High-energy nucleus = a dense gluon state ≈ a "color capacitor plate"

1/Qs

Non-linearity of gluon

(I)q->qg (II)g->gg (III)g->gg & gg->g

energy (or smaller x)

$$\sigma \sim Q_{\rm s}^2 = \mathcal{O}(1\,{\rm GeV^2})$$

since the saturation condtion is

$$\frac{\alpha_{\rm S}}{Q_s^2} \times xG_{\rm A} \sim R_{\rm A}^2 \Rightarrow Q_{\rm S} = O(1 \, {\rm GeV})$$
cross sect. gluon size of the nucleus ber a gluon dist. func.

total size of the gluons

Strong color field (glasma) is the key

[Lappi, McLerran (2006)]

Formation of a "colored capacitor" ⇒ Strong color field (= glasma)

How glasma turns into QGP?

Many scenarios:

Reviews: [Fukushima 1603.02340] [Schlichting, Teaney 1908.02113] [Berges et al. 2005.12299] [Gelis 2102.07604] ...

may roughly be categorized into 3 scenarios

- Strong-field scenario: instabilities of glasma
- Weak-coupling (particle-picture) scenario: kinetic description (bottom-up picture) + "hydrodynamization"
- Strong-coupling scenario: AdS/CFT

How glasma turns into QGP?

Many scenarios:

Reviews: [Fukushima 1603.02340] [Schlichting, Teaney 1908.02113] [Berges et al. 2005.12299] [Gelis 2102.07604] ...

may roughly be categorized into 3 scenarios

- Strong-field scenario: instabilities of glasma
- Weak-coupling (particle-picture) scenario: kinetic description (bottom-up picture) + "hydrodynamization"
- Strong-coupling scenario: AdS/CFT

Glasma is unstable \Rightarrow decays & isotropitizes spontaneously

both magnetic B- and electric E-fields can induce instabilities

Glasma is unstable \Rightarrow decays & isotropitizes spontaneously

both magnetic B- and electric E-fields can induce instabilities

• Especially important for isotropization

 \Rightarrow B-field instabilities enhance the long. fluct. to relax the anisotropy

Glasma is unstable \Rightarrow decays & isotropitizes spontaneously

both magnetic B- and electric E-fields can induce instabilities

- Especially important for isotropization
 - \Rightarrow B-field instabilities enhance the long. fluct. to relax the anisotropy
- Microscopically, two mechanisms:

Glasma is unstable \Rightarrow decays & isotropitizes spontaneously

both magnetic B- and electric E-fields can induce instabilities

- **Especially** important for isotropization
 - \Rightarrow B-field instabilities enhance the long. fluct. to relax the anisotropy
- Microscopically, two mechanisms:

 \odot

long. fluct ~ (small #) × $e^{ip_z z} \rightarrow$

long.

z-direction

8

0

Weibel instability

trans. direction

trans. motion splitting \Rightarrow tachionic for LLL n=0, s=1, $p_z < \sqrt{gB}$ $E_{n=0, s=1} \sim \sqrt{-gB} \Rightarrow$ long. flct. grow as $e^{iEt} \sim e^{\sqrt{gBt}}$

• Can be studied numerically [Romatschke, Venugopalan (2006)]

- \Rightarrow It exists, but so slow (~ 100/ Q_s > 20 fm/c)
- \Rightarrow could play some role but would not be the essence (within the current understanding)

(X)

 \otimes

(•)

(large #) $\times e^{ip_z z}$

[Fujii, Itakura, Iwasaki (2008)]

Glasma is unstable \Rightarrow decays & isotropitizes spontaneously

both magnetic B- and <u>electric E-</u>fields can induce instabilities

• Especially important for particle (quark) production

Glasma is unstable \Rightarrow decays & isotropitizes spontaneously

both magnetic B- and <u>electric E-</u>fields can induce instabilities

- Especially important for particle (quark) production
- Mechanism: the Schwinger effect

[Gelis, Kajantie, Lappi, hep-th/049508 & 0508229] [Gelfand, Hebenstreit, Berges, 1601.03576] [<u>HT</u>, 1609.06189] [Tanji, Berges, 1711.03445]

<u>Our vacuum = full of quantum fluct.</u>

E field supplies energy to tear the loop apart \Rightarrow pair particle production !

Glasma is unstable \Rightarrow decays & isotropitizes spontaneously

both magnetic B- and <u>electric E-</u>fields can induce instabilities

- Especially important for particle (quark) production
- Mechanism: the Schwinger effect

[Gelis, Kajantie, Lappi, hep-th/049508 & 0508229] [Gelfand, Hebenstreit, Berges, 1601.03576] [<u>HT</u>, 1609.06189] [Tanji, Berges, 1711.03445]

<u>Our vacuum = full of quantum fluct.</u>

E field supplies energy to tear the loop apart \Rightarrow pair particle production !

Can be studied numerically

 \Rightarrow Very fast & huge quark production

$$\because \tau \sim \frac{m}{gE} \sim \frac{m}{Q_s^2} \ll Q_s^{-1} \sim 0.1 \text{ fm/}c$$

⇒ important for chemical equilibration and also for µ5

Short summary: QGP formation

✓ Still incomplete but had a lot of progress in the last decade

- How are the huge number of quarks & gluons produced dN/dy=O(1000)?
- How do they thermalize/hydrodynamize to form the liquid-like QGP?
- How to explain the "early thermalization" O(1fm/c), indicated by exp data ?
- How to make a more realistic initial condition for hydro?
- How to probe the early time experimentally?

✓ Key ideas

- The very first stage is described by glasma
- Glasma is unstable
- Nice development in the weak-coupling scenario
- Hydrodynamization: applicability of hydro ≠ local thermal equilibrium

This conference ! (КФМРОЅТ, ... dilepton, photon, quarkonia, ...)

This

lecture

Rich & important physics in the early-time dynamics of HIC

gluon saturation (color glass condensate)
strong color field (glasma)
provide opportunity to study "new physics"

How strong EM field produced ?

Energetic \Rightarrow Large current \Rightarrow Strong magnetic field

How strong EM field produced ?

Energetic \Rightarrow Large current \Rightarrow Strong magnetic field

Pros: Very strong $eB \gg \Lambda^2_{QCD}$

Cons: Extremely short-lived $\tau \ll 0.1 \text{ fm}/c$

HIC is the strongest !

⇒ A unique environment to study "strong-field physics"

<u>Why strong-field physics interesting ?</u>

Stronger ⇒ More non-linearity (or non-perturbativity) ⇒ New physics

<u>Why strong-field physics interesting ?</u>

Stronger ⇒ More non-linearity (or non-perturbativity) ⇒ New physics

Vacuum

<u>Why strong-field physics interesting ?</u>

Stronger \Rightarrow More non-linearity (or non-perturbativity) \Rightarrow New physics

Weak field ($eF/m^2 \ll 1$) Vacuum

Strong field ($eF/m^2 \gg 1$)

Why strong-field physics interesting?

Stronger \Rightarrow More non-linearity (or non-perturbativity) \Rightarrow New physics

Vacuum

Weak field ($eF/m^2 \ll 1$) Strong field ($eF/m^2 \gg 1$)

Perturbative

⇒ well understood
 both theoretically
 & experimentally

e.g., Electron anomalous magnetic moment

 α^{-1} (theor.) = 137.03599914... α^{-1} (exp.) = 137.03599899...

[Aoyama, Kinoshta, Nio (2017)]

Why strong-field physics interesting?

Stronger ⇒ More non-linearity (or non-perturbativity) ⇒ New physics

[Aoyama, Kinoshta, Nio (2017)]

Examples of strong-field physics

✓ Novel QED processes

Review: [Fedotov, Ilderton, Karbstein, King, Seipt, <u>HT</u>, Torgrimsson, 2203.00019]

ex 1) Schwinger effect

ex 2) Photon splitting

ex 3) vacuum birefringence

Can also affect QCD/hadron physics

ex 1) hadron properties: mass, form factor, decay rate, ...

ex 2) QCD phase diagram

novel phase, (inverse) magnetic catalysis, ...

ex 3) Anomalous transport

chiral magnetic effect (CME), chiral magnetic wave (CMW), ...

Lots of thy. predictions but none of them have been observed exp. \Rightarrow HIC can be a game changer

Discoveries of QED strong-field phenomena in HIC

- Nonlinear process \Rightarrow strong suppression $\alpha \Rightarrow$ never observed previously
- HIC has strong field \Rightarrow large photon density, compensating the suppression by α
- Theory: Equivalent photon approximation [Li, Zhou, Zhou (2019)] Idea: Highly boosted Coulomb field ≈ collection of <u>real</u> photons

Strong-field physics of QCD/hadron ?

✓ Di-hadron production should also be possible

[Zhang, Zhang, Shao (2024)] [Hu, Lin, Pu, Wang (2024)] Recent exp. for proton (theory has also been developed only very recently):

Short summary: Strong EM field

✓ HIC creates the strongest EM fields in the Universe

- In peripheral HIC, $eB \gg \Lambda_{\rm QCD}^2$ is created, although short-lived $\tau \ll 0.1 ~{\rm fm}/c$
- A unique opportunity to study strong-field physics
- First observations of nonlinear QED phenomena: L-by-L scattering & (linear) BW process

Rich & important physics in the early-time dynamics of HIC

- gluon saturation (color glass condensate)
- strong color field (glasma)
- strong EM field

provide opportunity to study "new physics"

origin of the QGP in HIC

• • • •