

Jets: Hard-Soft Correlation

University of Jyväskylä Helsinki Institute of Physics

Hard Probes 2024, Nagasaki, Japan

26/09/2024

Hard-Soft Correlations

Vacuum-Like Physics

• Initial Coherent Scatterings

- » Factorization: Coherent Radiation Not Resolved By QGP [Caucal, Iancu, Mueller, Soyez PRL(2018)]
- » Delayed Energy Loss $(\tau=0.6 \text{ fm/c})$ [Andres, Armesto, Niemi, Paatelainen, Salgado PLB(2020)]
- » Modified Vacuum Shower [Kumar, Majumder, Shen(2020)]
- » Coherent Energy Loss \Rightarrow Jet v_2 and R_{AA}

[Mehtar-Tani, Pablos, Tywoniuk PRD(2024)]

» ...

See also: A. Takacs Mon 15:00

Decoherence

• Individual Antennas Resolved By QGP

Decoherence

• Individual Antennas Resolved By QGP

Jet-Medium Scattering

- Multiple Scattering:
 - » Momentum Broadening
 - » Drag
 - » Conversion

- Multiple Scattering \Rightarrow Induce Radiation
- Interplay form-time $\iff \lambda_{mfp}$

zP

$$)P \quad t_{form} \sim \frac{z(1-z)P}{k_T^2} , \quad \langle k_T^2 \rangle \simeq \hat{q} t_{form} \Rightarrow t_{form} \sim \sqrt{\frac{z(1-z)P}{\hat{q}}}$$

- Multiple Scattering \Rightarrow Induce Radiation
- Interplay form-time $\iff \lambda_{mfp}$

zP

$$t_{form} \sim \frac{z(1-z)P}{k_T^2} , \quad \langle k_T^2 \rangle \simeq \hat{q} t_{form} \Rightarrow t_{form} \sim \sqrt{\frac{z(1-z)P}{\hat{q}}}$$

» $t_{form} \ll \lambda_{mfp}$: Finite Number Of Scatterings

- Multiple Scattering \Rightarrow Induce Radiation
- Interplay form-time $\iff \lambda_{mfp}$

zP

$$\begin{split} t_{form} \sim \frac{z(1-z)P}{k_T^2} , \quad \langle k_T^2 \rangle \simeq \widehat{q} t_{form} \; \Rightarrow \; t_{form} \sim \sqrt{\frac{z(1-z)P}{\widehat{q}}} \\ & \\ \texttt{``tform} \ll \lambda_{mfp} : \; \texttt{Finite Number Of Scatterings} \\ & \\ \texttt{``tform} \gg \lambda_{mfp} : \; \texttt{Interference b/w Multiple Scatterings} \end{split}$$

- Multiple Scattering \Rightarrow Induce Radiation
- Interplay form-time $\iff \lambda_{mfp}$

zP

• Interference Effects \Rightarrow LPM Suppression for $zP\gg T$

»BDMPS-Z Formalism: Resum Multiple-Scattering diagram

$$\underbrace{\frac{d\Gamma_{bc}^{a}}{dz}(P,z,t)}_{\text{Rate}} = \underbrace{\frac{d}{dt}}_{\text{Rate}} \underbrace{\frac{dI_{bc}^{a}}{dz}(P,z,t)}_{\text{Spectrum}} = \frac{g^{2}P_{bc}^{a}(z)}{4\pi P^{2}z^{2}(1-z)^{2}} \text{Re } \int_{0}^{t} dt_{1} \int_{p,q} \frac{iq \cdot p}{\delta E(q)} \underbrace{\Gamma_{3}(t)}_{\text{Medium}} \circ G(t,q;t_{1},p) .$$

$$\widehat{q}(t) = \int d^{2}k_{T} \ k_{T}^{2} \ \Gamma(t)$$

$$\widehat{\Gamma(t)} \propto \frac{1}{q^{2}(q^{2}+m_{D}^{2})^{2}} \qquad \text{>HTL Potential}$$

$$\Gamma(t) \propto \frac{1}{(q^{2}+m_{D}^{2})^{2}} \qquad \text{>Static Screening}$$

$$\Gamma(t) \propto \widehat{q}b^{2} \qquad \text{>Harmonic Oscillator (HO)}$$

$$S. \ \text{Shi Mon. 15:40}$$

$$\Gamma(t) \propto C_{NP-QCD}(q) \qquad \text{>Non-perturbative} \qquad \text{[Moore, Schlusser, Schlichting IS JHEP(2020)]}$$

$$\Gamma(t) \propto C_{Non-Eq}(q) \qquad \text{>Non-Eq Extracted} \qquad F. \ \text{Lindenbauer Mon 17:30}$$

Effective Kinetic Theory

Static/Evolving Includes Medium Recoil/Response $f(p) = f^{QGP}(p) + \delta f^{jet}(p) \qquad \delta f^{jet}(p) = f(p) - f^{QGP}(p) \leq 0$

Energy Distribution

 $D(x) = \delta(xE_0 - p)p^3\delta f^{jet}(p)$

»Integrate Out Time-Dependence $t_{form} \sim \sqrt{rac{z(1-z)P}{\widehat{q}}} \ll L$

 $\begin{aligned} & \text{ ``Integrate Out Time-Dependence } t_{form} \sim \sqrt{\frac{z(1-z)P}{\hat{q}}} \ll L \\ & \frac{d\Gamma_{bc}^a}{dz}(P,z,\infty) = \frac{g^2 P_{bc}^a(z)}{4\pi P^2 z^2 (1-z)^2} \text{Re } \int_0^\infty dt_1 \int_{p,q} \frac{i q \cdot p}{\delta E(q)} \Gamma_3(t) \circ G(\infty,q;t_1,p) \;. \end{aligned}$

»Integrate Out Time-Dependence
$$t_{form} \sim \sqrt{\frac{z(1-z)P}{\hat{q}}} \ll L$$

 $\frac{d\Gamma_{bc}^{a}}{dz}(P, z, \infty) = \frac{g^{2}P_{bc}^{a}(z)}{4\pi P^{2}z^{2}(1-z)^{2}} \operatorname{Re} \int_{0}^{\infty} dt_{1} \int_{p,q} \frac{iq.p}{\delta E(q)} \Gamma_{3}(t) \circ G(\infty, q; t_{1}, p)$

9/23

 $\text{ Solution } D(x) \propto \frac{d\Gamma_{bc}^{a}}{dz}(P, z, \infty) = \frac{g^{2}P_{bc}^{a}(z)}{4\pi P^{2}z^{2}(1-z)^{2}} \operatorname{Re} \int_{0}^{\infty} dt_{1} \int_{p,q} \frac{iq.p}{\delta E(q)} \Gamma_{3}(t) \circ G(\infty, q; t_{1}, p) .$

»Due to the Rate Momentum Dependence

Evolving Background

L. F. Zhou Poster
S. B. Cabodevila Mon 18:10

[Zhou, Brewer, Mazeliauskas JHEP(2024)]

• Evolving Medium

$$\begin{pmatrix} \partial_{\tau} + \frac{p_z}{\tau} \partial_{p_z} \end{pmatrix} f^{QGP}(p,t) = C[f^{QGP}] \\ \left(\partial_{\tau} + \frac{p_z}{\tau} \partial_{p_z} \right) \delta f^{jet}(p,t) = C[f^{QGP}, \delta f^{jet}]$$

• CGC Initial Condition:

$$f^{QGP}(p,t=0) = \frac{2A}{\lambda} \frac{Q_0 \exp[-\frac{2}{3}(p_T^2 + \xi^2 p_z^2)/Q_0^2]}{\sqrt{p_T^2 + \xi^2 p_z^2}}$$

 $f(p, t) = f^{QGP}(p, t) + \delta f^{jet}(p, t)$

 p_x

»"Hydrodynamisation" Of Jets: Indistinguishable From Soft Background Perturbations $\tilde{\omega}_{mjh} = 2.7$

[Zhou, Brewer, Mazeliauskas JHEP(2024)]

S. B. Cabodevila Mon 18:10

L. F. Zhou Poster

11/23

Medium Response

• Thermalized Jet Distribution »Static Medium:

$$\delta \bar{f}_{a}^{(eq)}(\mathbf{p}) = V \left[\delta T \partial_{T} + \delta u^{z} \partial_{u^{z}} + \delta \mu_{f} \partial_{\mu_{f}} \right] n_{a}(\mathbf{p})$$

»Evolving Medium:

$$\delta f_{\rm visc} = \frac{\eta/s}{\tau \overline{T}(\tau)} (1 - 3\cos^2\theta) F\left(p/\overline{T}(\tau)\right)$$

Small Systems: v_2 vs R_{AA}

- High- p_T v_2 in pp and pPb
- Centrality Dependence R_{pPb}
 - » Initial State Correlations?
 - » Initial State Energy loss?
- Exciting Lab For Hard/Soft Correlations

13/23

Jet No Longer A Perturbation

- Jets No Longer A Perturbation On Top Of Bulk
 - » Jet Carry Substantial Amount Of Energy
 - » Jet Modifies The Bulk
 - » Bulk Extent is Small ⇒ Finite Size Effects Important
 - » Energy Loss Negligible?
 - » Vacuum-like Physics Important: Higher-Twist, GLV...

Heavy-Ion

$$f(p) = f^{QGP}(p) + \delta f^{jet}(p)$$

Small Systems

 $f(p) = f^{jet}(p) + \delta f^{Bulk}(p)$

Initial State

Initial State \vec{P}_a \vec{P}_b

» Balanced Transverse Momentum $\vec{q_T}=\vec{p_{aT}}+\vec{p_{bT}}$ b/w Hard/Soft Particles

- Conservation Of Momentum ⇒ Hard/Soft Correlation
 - » Corroborated By Simple PYTHIA
 simulation

- Conservation Of Momentum ⇒ Hard/Soft Correlation
 - » Corroborated By Simple PYTHIA simulation
- TMD-PDFs and FFs:
 - » Azimuthal Correlations Due Initial k_T
 - » Boer-Mulders'/Collins Effects

Energy Conservation

- Multi-stage Framework For Small Systems
 - » Correlations b/w Soft/Hard Particle
 Production
 - » Competition b/w Jet p_T and Partonic remnants
 - » Hard Scattering Increasing E_T until Momentum Conservation Limits

Bjorken-x

 Presence of Hard Partons ⇒ Significant Difference Bjorken-x Distribution Than Average Protons

[Perepelitsa PRC(2024)]

Energy Loss?

S. Jeon Tue. 16:15

Formation Time

Shuzhe Mon. 15:40

Early Stages

• Broadening In Non-Eq EKT

»Momentum Broadening
Affected By
Anisotropy⇒Scaling
Behavior

»Broadening Kernel Extraction ⇒ Markedly Different Throughout The Equilibration

[K. Boguslavski, A. Kurkela, T. Lappi, F. Lindenbauer, J. Peuron PLB (2024) PhysRevD (2024)] 21/23

Gradient effects

- »Enhanced Broadening/Radiation Opposite To Gradient ^{J. Bahder Tue 11:50}
- »Jet- v_2 correlations due to drifts

Conclusion

- Heavy-Ion \Rightarrow Jet Perturbation On Top Of The QGP
- Small Systems \Rightarrow Bulk Dynamics Altered By Jets

»Observables \Rightarrow Jet v_2 vs R_{AA} , Jet-Substructure See Daniel Talk Before »Small Systems \Rightarrow A Laboratory to Understand Int. St. Correlations? Int. St. Energy Loss? See Isobel Talk Next

Backup

Beyond AMY

[Isaksen, Takacs, Tywoniuk JHEP(2023)]

»Time Dependent Splitting Rates [Isaksen,

$$\partial_t D(x) = \int_0^1 dz \, \left[\frac{d\Gamma_{bc}^a}{dz} \left(\frac{x}{z}, z, \mathbf{t} \right) z D\left(\frac{x}{z} \right) - \frac{d\Gamma_{bc}^a}{dz} (x, z, \mathbf{t}) z D(x) \right]$$
»Static Medium

Rate

Beyond AMY

[Isaksen, Takacs, Tywoniuk JHEP(2023)] »Time Dependent Splitting Rates $\partial_t D(x) = \int_0^1 dz \, \left[\frac{d\Gamma_{bc}^a}{dz} \left(\frac{x}{z}, z, \mathbf{t} \right) z D\left(\frac{x}{z} \right) - \frac{d\Gamma_{bc}^a}{dz} (x, z, \mathbf{t}) z D(x) \right]$ »Static Medium Few Soft Scatterings 10^{-} 10^{0} $\alpha_s = 0.28, \hat{q}_0 = 0.3 \text{ GeV}^3, \mu = 0.3 \text{ GeV}$ $\alpha_s = 0.28, \hat{q} = 0.3 \text{ GeV}^3, \mu = 0.3 \text{ GeV}^3$ E = 100 GeV, t = 0.04 fm $E = 10^4 \text{ GeV}, z = 10^{-7}$ $E = 10^4 \text{ GeV}, z = 10^{-3}$ E = 100 GeV, t = 0.4 fmE = 100 GeV, t = 4 fm 10^{-} 10^{-} **Rare Hard** $\left[{{\rm Va}^{-3}} \right] {10^{-3}} {10^{-4}} \left[{{\rm GeV}} \right]$ Scattering t_f D(x, t) = 010-Multiple D_0 Soft HO Limits soft 10^{-1} 10^{-} Scatterings ---- HO+NHO ---- Full analytic soft Ful Full analytic finite-z 10^{-5}_{-6} 10^{-0} 10⁻⁴ 10^{-6} 10^{-2} $10^{-1} t_c \quad 10^0 \quad 10$ 10^{-3} $x_c 10^{-2}$ 10^{0} 10^0 10^{-4} \bar{x}_c 10^{-} $x_{\rm BH}$ $x_{\rm BH}$ 10^{-3} $\bar{t}_{*} 10^{-2}$ 10^{-1} 10^{-3} 10^{-2} $t \, [\mathrm{fm}]$ xxx $t \, [\mathrm{fm}]$ Distribution Rate

Harmonic Oscillator

- »Rates in Expanding Medium w/ HO Approx.
- »Analytical expressions [BDMPS, Arnold]
- »Temperature decreases $T \ll P \Rightarrow$ Multiple Soft Scattering

[AdhHya, Salgado,Spoustaa, Tywoniuk JHEP (2020)]

Rate