

Preeti Dhankher (UC Berkeley and LBNL) on behalf of the ALICE Collaboration

data will allow a more systematic study of mass effects in parton shower and

hadronization

Many thanks to Kyle Lee and collaborators for providing the pQCD calculations.

TULLIN

BERKELEY LAB

mechanisms

MC model comparisons show sensitivity to different hadronization

Preeti Dhankher UCB/LBNL

27 Sept. 2024

Hard Probes Nagasaki, Japan

EECs: how is energy distributed within a jet?

*Probing the shower properties of charm quarks using energy-energy correlators with ALICE

Scaling behavior identical to massless case for larger $R_{\rm L}$.

virtuality ~ $p_T R_L + m$

*Probing the shower properties of charm quarks using energy-energy correlators with ALICE

arXiv:2210.09311

0.100

-NLO

0.100

arXiv:2210.09311

0.100

-NLO

0.100

Preeti Dhankher *27 Sept. 2024

1. Charm-tagged jet EECs have a lower amplitude than inclusive jet EECs \rightarrow consistent with EECs for massive quarks

- 1. Charm-tagged jet EECs have a lower amplitude than inclusive jet EECs \rightarrow consistent with EECs for massive quarks
- 2. Striking peak position similarity of charm-tagged and inclusive jet (gluon **dominated**) \rightarrow complex convolution: **Casimir + mass effects in the shower** and non-perturbative hadronization effects

*pQCD calculation by Kyle Lee and collaborators

*Probing the shower properties of charm quarks using energy-energy correlators with ALICE

Preeti Dhankher *27 Sept. 2024

I. Charm-tagged jet EECs have a lower amplitude than inclusive jet EECs \rightarrow consistent with EECs for massive quarks

Striking peak position similarity of charm-tagged and inclusive jet (gluon **dominated**) \rightarrow complex convolution: **Casimir + mass effects in the shower** and non-perturbative hadronization effects

*Probing the shower properties of charm quarks using energy-energy correlators with ALICE

1. Charm-tagged jet EECs have a lower amplitude than inclusive jet EECs \rightarrow consistent with EECs for massive quarks

Striking peak position similarity of charm-tagged and inclusive jet (gluon **dominated**) → complex convolution: **Casimir + mass effects in the shower** and non-perturbative hadronization effects

Leading particle *p***_T cut** in inclusive jet at low *p*_{T,jet}: bias towards quark-initiated jets.

*Probing the shower properties of charm quarks using energy-energy correlators with ALICE

1. Charm-tagged jet EECs have a lower amplitude than inclusive jet EECs \rightarrow consistent with EECs for massive quarks

Striking peak position similarity of charm-tagged and inclusive jet (gluon **dominated**) \rightarrow complex convolution: **Casimir + mass effects in the shower** and non-perturbative hadronization effects

Leading particle p_T cut in inclusive jet at low *p*_{T,jet}: bias towards quark-initiated jets.

pQCD calculations reproduce general shape, with some tension near peak →hadronization effects play important role in the peak position.

5. Ratio of charm-tagged to light-quark jets shows significantly more suppression at small angles

*Probing the shower properties of charm quarks using energy-energy correlators with ALICE

1. Charm-tagged jet EECs have a lower amplitude than inclusive jet EECs \rightarrow consistent with EECs for massive quarks

Striking peak position similarity of charm-tagged and inclusive jet (gluon **dominated**) \rightarrow complex convolution: **Casimir + mass effects in the shower** and non-perturbative hadronization effects

Leading particle p_T cut in inclusive jet at low *p*_{T,jet}: bias towards quark-initiated jets.

pQCD calculations reproduce general shape, with some tension near peak →hadronization effects play important $^{R_{L}}$ role in the peak position.

*Probing the shower properties of charm quarks using energy-energy correlators with ALICE

Preeti Dhankher *27 Sept. 2024

*Probing the shower properties of charm quarks using energy-energy correlators with ALICE

G		
A AHADIC		
4		

*Probing the shower properties of charm quarks using energy-energy correlators with ALICE

G		
A AHADIC		

hadronization vs. parton shower implementations.

*Probing the shower properties of charm quarks using energy-energy correlators with ALICE

Preeti Dhankher * 27 Sept. 2024

G		
A AHADIC		
4		

- ^o HERWIG: overpredicts inclusive jets and underpredicts charm-tagged jets \rightarrow Sensitivity to hadronization vs. parton shower implementations.
- ^o SHERPA AHADIC: predicts peak at lower $R_{\rm L}$ for both EECs \rightarrow suggests later hadronization compared to other models.

*Probing the shower properties of charm quarks using energy-energy correlators with ALICE

Thank you ありがとうございます

*Probing the shower properties of charm quarks using energy-energy correlators with ALICE

