Quarkonium Suppression in
Strongly Coupled Plasmas

12th International Conference on Hard and Electromagnetic
Probes of High-Energy Nuclear Collisions, Nagasaki, Japan

September 27, 2024

Bruno Scheihing Hitschfeld
based on 2304.03298,
2306.13127, 2310.09325

IIII- '
1

[
®

| UC SANTA BARBARA
|1 Kavli Institute for

Theoretical Physics



What properties of QGP does
quarkonium probe?
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Answer in Xiaojun Yao’s talk (14:50 Wed):
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Transport descriptions of quarkonia

connecting first-principles theory with physical phenomena

e So far, transport descriptions that incorporate these correlators
explicitly make simplifying assumptions that make the dynamics of
quarkonium “Markovian” (ho memory effects). For example:

O The Quantum Brownian motion limit assumes 7> | AE|, with dp

AL the energy gap between different quarkonium states. In this T _ ZLlp()]
way, it is assumed that QGP relaxes quickly back to local dt
equilibrium relative to the time scales of quarkonium.

o The Quantum Optical limit assumes a semiclassical description ~ Df
where QGP is made of quasiparticles. In this way, transitionsat — — G f(1)]
different times become decorrelated. dt

e Do these assumptions capture the physics of QGP in HICs?



Comparing with a strongly coupled case
how doing calculations in ./ =4 SYM helps

Calculating real time correlation functions in QCD at strong coupling is
challenging. A lattice QCD calculation will help! [2306.13127 w/ X. Yao]

We can gain intuition for what can happen by exploring other theories in

which calculations are easier. For example, in /' = 4 SYM.
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With G. Nijs and X. Yao [2304.03298,
2310.09325] we did this calculation and
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transport descriptions.
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o the strongly coupled result directly challenges -100
the assumptions of the previously mentioned
transport descriptions.



Comparing weakly and strongly coupled picture
how our theoretical expectation changes

* A comparison using the existing transport formalisms is impossible, as they
completely ignore memory effects.

* |n absence of a fully developed transport formalism, back to open quantum
systems basics:

Poo(t) = Trogp [U (Dper(t = OU T(t)] -

 From here, In time-dependent perturbation theory:
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Quarkonium
regeneration

weak vs strong
coupling

» Big difference in the
magnitude of
quarkonium
regeneration in the
two cases!

—> Jo Interpret data
in terms of QCD
properties,
assumptions about
transport need to be
relaxed.

P(octet, bb — Y(15S))

Regeneration probability Y(1S), Bjorken flow
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Outlook

the road ahead

e A lattice QCD calculation of

)
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3N.

can help enormously to determine whether Markovian or non-Markovian
effects give the dominant contribution to regeneration/dissociation.

G,(0) = A Ef@QW (1, 0)E{(0))

* For the most likely case, where things will be somewhere in between:

* A transport description that incorporates non-Markovian effects is needed
to interpret data in terms of microscopic descriptions.
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