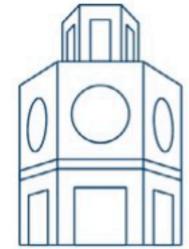
Quarkonium Suppression in Strongly Coupled Plasmas

September 27, 2024

Bruno Scheihing Hitschfeld based on 2304.03298, 2306.13127, 2310.09325

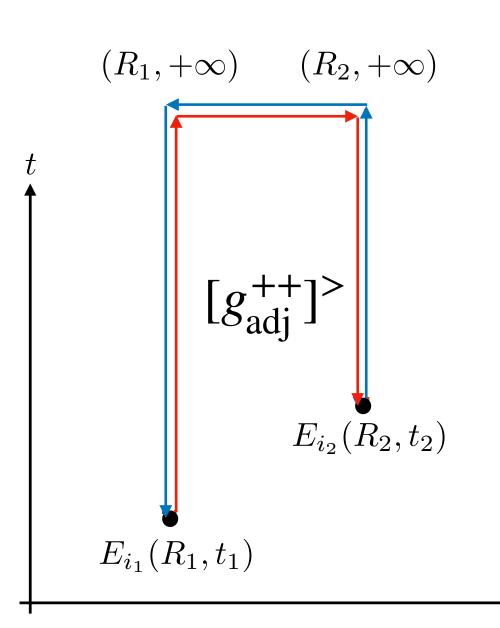
12th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions, Nagasaki, Japan



Kavli Institute for **Theoretical Physics**

What properties of QGP does quarkonium probe?

What properties of QGP does quarkonium probe?

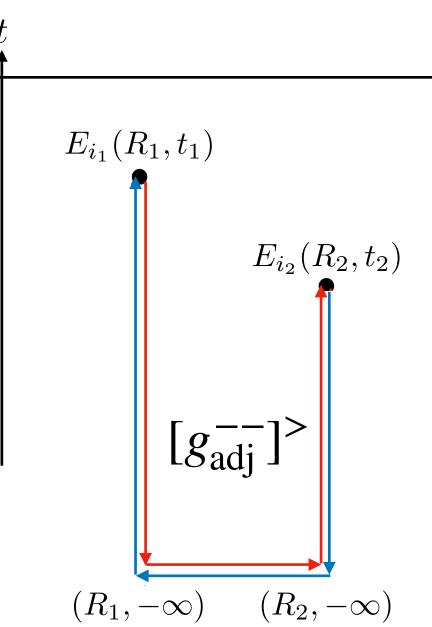


Answer in Xiaojun Yao's talk (14:50 Wed):

$$[g_{\text{adj}}^{++}]_{i_{2}i_{1}}^{>}(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}) = \left\langle \left(E_{i_{2}}(\mathbf{R}_{2}, t_{2}) \mathcal{W}_{2} \right)^{a} \left(\mathcal{W}_{1}E_{i_{1}}(\mathbf{R}_{1}, t_{1}) \right)^{a} \right\rangle_{T}$$

$$[g_{\text{adj}}^{--}]_{i_2i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \left\langle \left(f_2^{--} \right)_{i_2i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) \right\rangle = \left\langle f_2^{--} \right\rangle$$

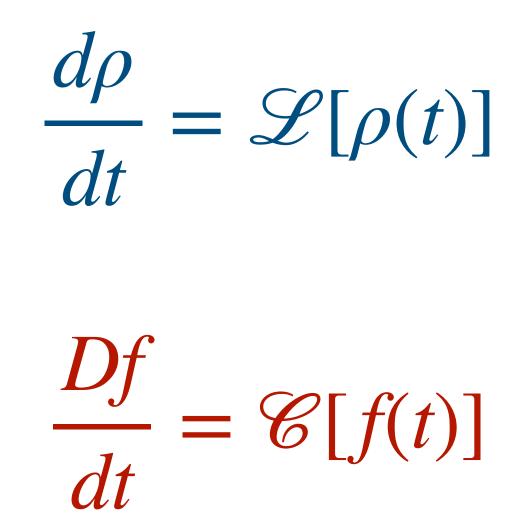
 $\mathscr{W}_{2'}E_{i_2}(\mathbf{R}_2, t_2))^a (E_{i_1}(\mathbf{R}_1, t_1)\mathscr{W}_{1'})^a \rangle_T$



 $\longrightarrow R$

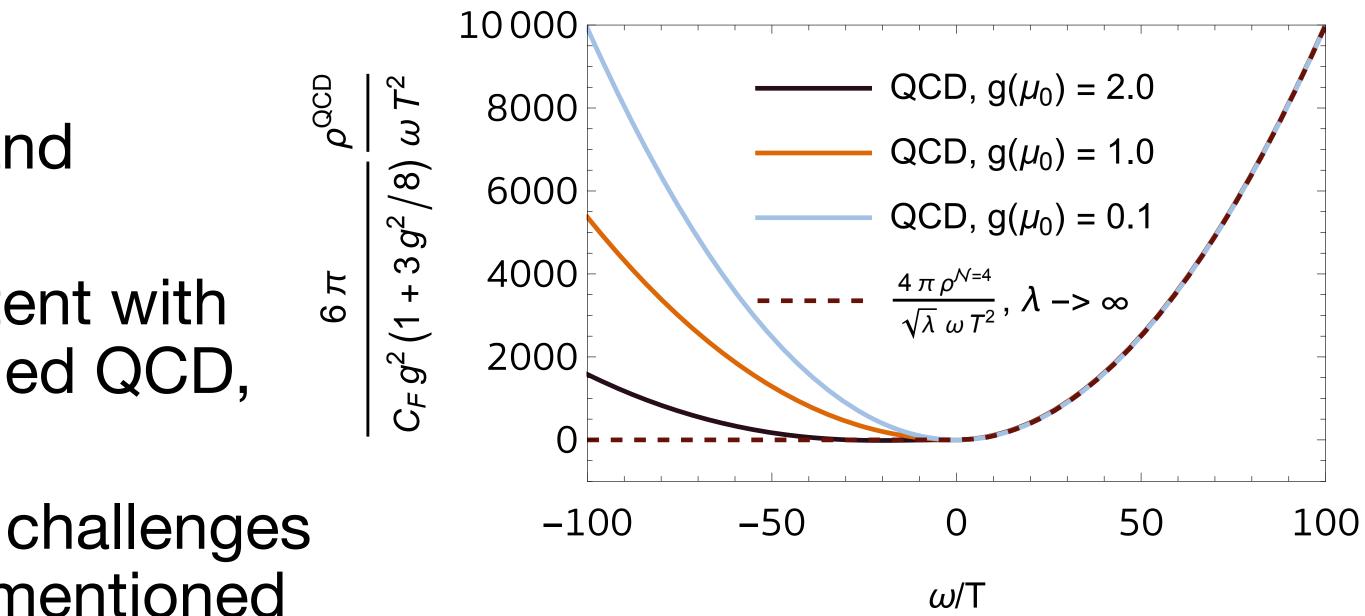
Transport descriptions of quarkonia connecting first-principles theory with physical phenomena

- So far, transport descriptions that incorporate these correlators explicitly make simplifying assumptions that make the dynamics of quarkonium "Markovian" (no memory effects). For example:
 - ^o The Quantum Brownian motion limit assumes $T \gg |\Delta E|$, with ΔE the energy gap between different quarkonium states. In this way, it is assumed that QGP relaxes quickly back to local equilibrium relative to the time scales of quarkonium.
 - The Quantum Optical limit assumes a semiclassical description where QGP is made of quasiparticles. In this way, transitions at different times become decorrelated.
- Do these assumptions capture the physics of QGP in HICs?



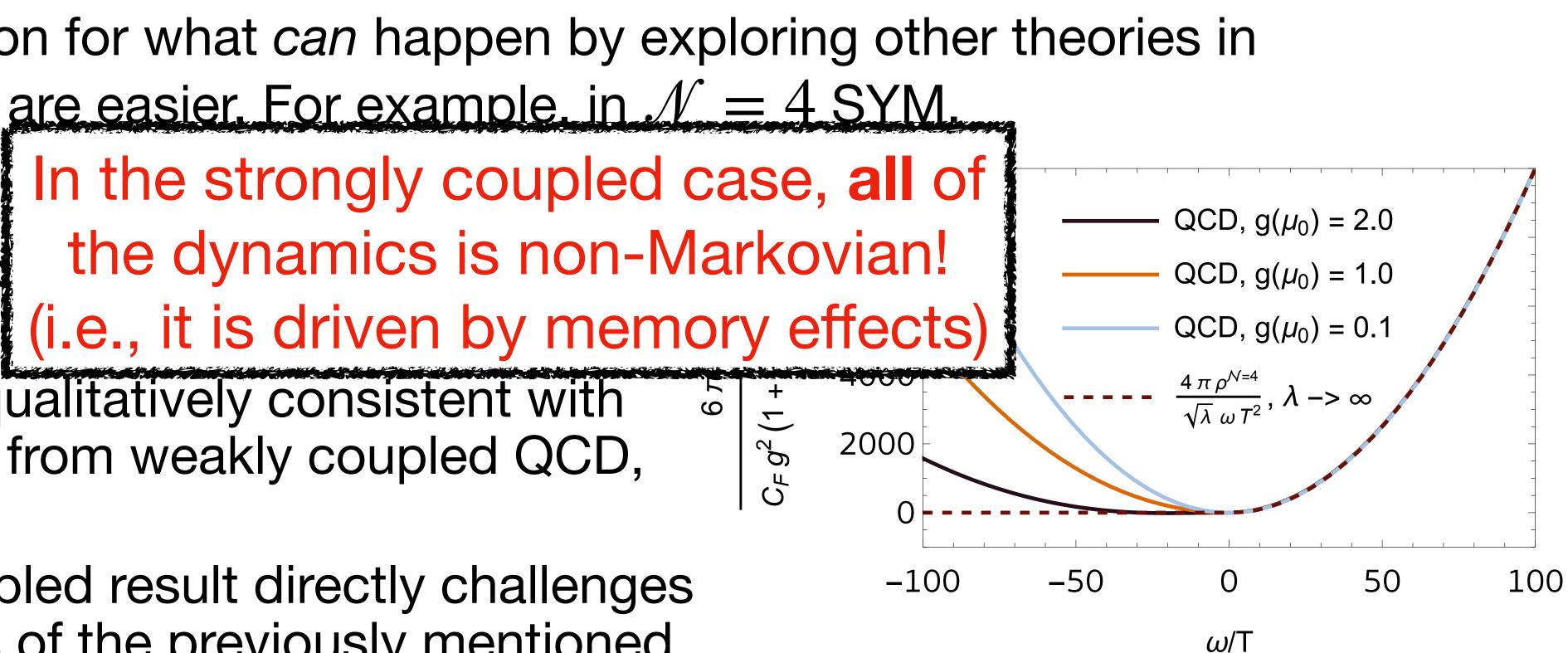
Comparing with a strongly coupled case how doing calculations in $\mathcal{N} = 4$ SYM helps

- Calculating real time correlation functions in QCD at strong coupling is challenging. A lattice QCD calculation will help! [2306.13127 w/ X. Yao]
- We can gain intuition for what can happen by exploring other theories in which calculations are easier. For example, in $\mathcal{N} = 4$ SYM.
- With G. Nijs and X. Yao [2304.03298, 2310.09325] we did this calculation and showed that:
 - The results are qualitatively consistent with an extrapolation from weakly coupled QCD, and
 - the strongly coupled result directly challenges the assumptions of the previously mentioned transport descriptions.



Comparing with a strongly coupled case how doing calculations in $\mathcal{N} = 4$ SYM helps

- Calculating real time correlation functions in QCD at strong coupling is challenging. A lattice QCD calculation will help! [2306.13127 w/ X. Yao]
- We can gain intuition for what can happen by exploring other theories in which calculations are easier. For example, in N = 4 SYM.
- With G. Nijs and X. 2310.09325] we di showed that:
 - The results are qualitatively consistent with an extrapolation from weakly coupled QCD, and
 - the strongly coupled result directly challenges the assumptions of the previously mentioned transport descriptions.



Comparing weakly and strongly coupled picture how our theoretical expectation changes

- A comparison using the existing transport formalisms is impossible, as they completely ignore memory effects.
- In absence of a fully developed transport formalism, back to open quantum systems basics:

$$\rho_{Q\bar{Q}}(t) = \operatorname{Tr}_{QGP} \left[U(t)\rho_{\text{tot}}(t=0)U^{\dagger}(t) \right] \,.$$

• From here, in time-dependent perturbation theory:

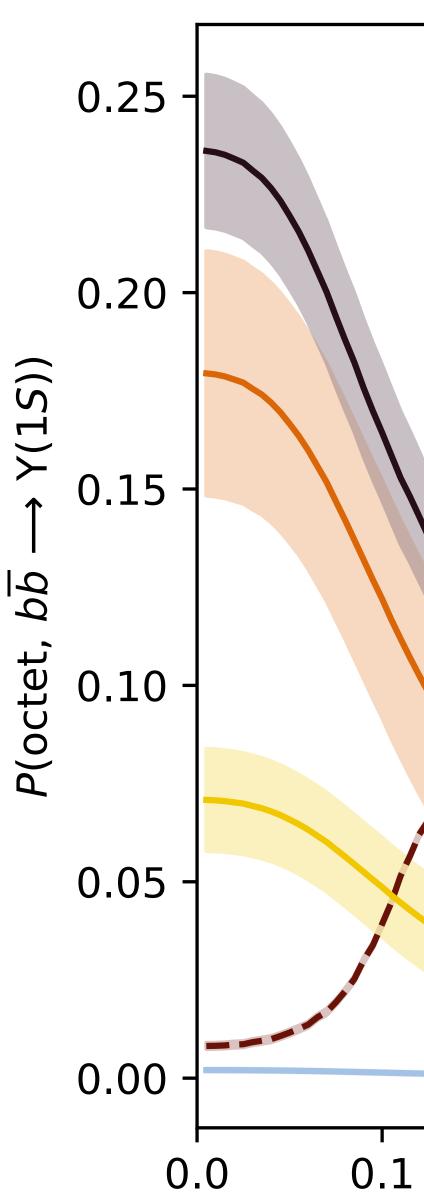
$$\langle nl | \rho_{Q\bar{Q}}(t_f) | nl \rangle = \int_{t_i}^{t_f} dt_1 \int_{t_i}^{t_f} dt_2 [g_{adj}^{--}]^{>}(t_2, t_1) dt_1$$

 $\langle nl \mid U_{[t_f,t_1]}^{\text{singlet}} r_i U_{[t_1,t_i]}^{\text{octet}} \mid \psi_0 \rangle \left(\langle nl \mid U_{[t_f,t_2]}^{\text{singlet}} r_i U_{[t_2,t_i]}^{\text{octet}} \mid \psi_0 \rangle \right)^{\dagger}$

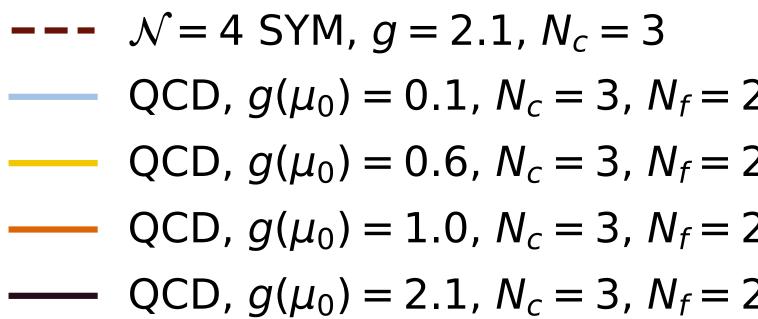
Quarkonium regeneration weak vs strong coupling

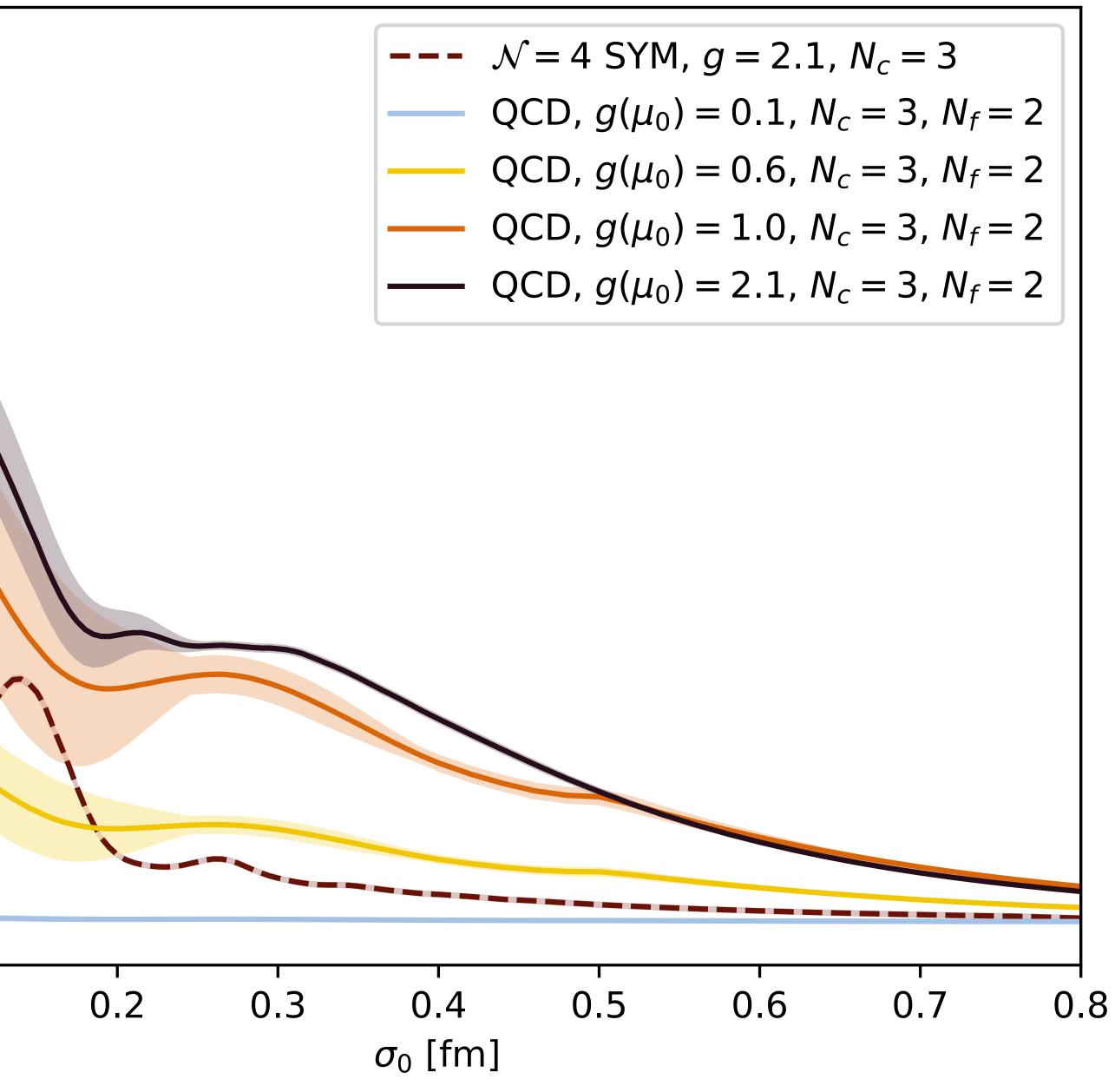
• Big difference in the magnitude of quarkonium regeneration in the two cases!

 \implies To interpret data in terms of QCD properties, assumptions about transport need to be relaxed.



Regeneration probability Y(1S), Bjorken flow





Outlook the road ahead

A lattice QCD calculation of

$$G_{\rm adj}(\tau) = \frac{T_F g^2}{3N_c} \langle .$$

effects give the dominant contribution to regeneration/dissociation.

- For the most likely case, where things will be somewhere in between:
 - A transport description that incorporates non-Markovian effects is needed to interpret data in terms of microscopic descriptions.

 $\left| E_{i}^{a}(\tau) \mathcal{W}^{ab}(\tau,0) E_{i}^{b}(0) \right\rangle_{\tau}$

can help enormously to determine whether Markovian or non-Markovian

Outlook the road ahead

A lattice QCD calculation of

$$G_{\rm adj}(\tau) = \frac{T_F g^2}{3N_c} \langle .$$

effects give the dominant contribution to regeneration/dissociation.

- For the most likely case, where things will be somewhere in between:
 - A transport description that incorporates non-Markovian effects is needed to interpret data in terms of microscopic descriptions.

 $\left| E_{i}^{a}(\tau) \mathcal{W}^{ab}(\tau,0) E_{i}^{b}(0) \right\rangle_{\tau}$

can help enormously to determine whether Markovian or non-Markovian

