

Fully 3D-printed plastic scintillator particle detector prototype

Botao Li (ETH Zurich) on behalf of 3DET Collaboration 23.05.2024 CALOR 2024, Tsukuba, JAPAN

Why 3D Printing?

- In the last years more and more experiments started to develop massive plastic scintillator detectors with more complex and fine-granularity geometries;
- Neutrino detector, sampling calorimeters, neutron detectors, etc.
 - Case study: example from the new neutrino plastic scintillator detector at the T2K experiment (~2,000,000 scintillator cubes)

 Not easy to build and assemble these detectors with traditional techniques (e.g. injection moulding), that involve many different steps involving subtractive processes

Additive Manufacturing may be a viable and cheap solution for the scalability towards a multi-ton detector.

3D printing a scintillating "SuperCube"

Fused Deposition Modeling (FDM) is a promising solution

SuperCube (with holes for WLS fibers)

Need a technology that can:

- Achieve good scintillation performance and high transparency in the scintillator core.
- 3D print big volumes in relatively short time and cheap processes and avoid multiple steps (manufacturing and assembly)
- 3D print simultaneously more materials.
- Hollow objects, e.g. holes for WLS fibers

The proof of the concept

800 0,99 700 0,98 0,97 600 0,96 0,95 0,94 500 0,93 counts 400 biphenyl content, mass.% 300 200 100 600 200 400 800 1000 channel #

Tested both w/ and w/o 5% biphenyl as plasticizer (in later prototypes we also dropped biphenyl out)

Optimal composition is a standard polysterene based one, i.e. polystyrene + pTP + POPOP (same as UPS-923A produced by ISMA, NIMA 555(1):125–131, 2005)

Polystyrene is well known => No need to "invent" a new chemical composition !

The proof of the concept

S.Berns et al. 2020 JINST 15 P10019

The outermost surface is always opaque. Characteristic of FDM

Light output, Cs137 Comparison of technologies

Results confirmed with PMT on Cs¹³⁷ source (with reflector envelope)

80.018

50.016

£0.014

45 #of photoelectrons

35

40

-Cast

- Extruded

- 3DPrint

40

45 # of photoelectrons

Attenuation length (technical)

Transparency measured from 5 cm-long bar

- Polished on the outermost surface and covered with white teflon.
- SiPM on one end + Sr⁹⁰/Y⁹⁰ source moving at different positions
- Sparse presence of small air bubbles

The scintillator transparency was found to be sufficiently good for few-cm granularity detectors

Fused injection modeling

3D print the mould and quickly inject melted plastic scintillator

arXiv:2312.04672

The desired geometrical shape is preserved by a reflective polycarbonate + PTFE heat-resistant (~300°C) filament

Transmission with Rosa3D filament

The 3D printed SuperCube

The 3D printed SuperCube

Tracking of cosmic rays in a 5x5x5 cubes prototypes

- $\checkmark\,$ Hamamatsu S13360-1325CS SiPM (PDE~25%)
- $\checkmark\,$ CAEN FEB 5702 (CITIROC ASIC) front-end

Compared with cast scintillator (both filament and cast produced by ISMA)

Scintillator light yield same as standard scintillator (MPV ~ 29 p.e. / MIP / cm)

Cube-to-cube crosstalk $\sim 4\% \rightarrow$ slightly higher but OK for neutrino detection

SuperCube Beam test

- Beam tests at CERN in T9 from Proton Synchrotron
- Hodoscope of 16(X)+16(Y)
 1mm scintillating fibers
 (Kuraray SCSF-78 square)

 Average light yield ~28 p.e.

- crosstalk peak at 3%,
 Light yield variance 4% in average
- within a single cube of ~7%

Conclusion and Future plans

- We demonstrated the feasibility of 3D printing plastic scintillator detectors with complex and 3D geometries with performance analogous to traditional manufacturing processes. No subtractive processes needed.
- To optimize the 3d-printed scintillating cube matrix, work in progress to further improve the reflector filament.
 - heat resistent and high reflectivity
 - thinner reflector walls
- Working towards fully automatic printer, sampling calorimeter.
- Writing an article where details about the AM process implementation and final performances are described.
- Developed also 3D printing for inorganic materials (see backup).

If interested in such R&D, we are open to set collaborations for applications and projects (<u>https://threedet.web.cern.ch</u>)

The 3DET collaboration

The 3D printed DETector (3DET) collaboration aims at investigating and developing additive manufacturing as a new production technique for future scintillator particle detectors

General purpose R&D towards the first 3D printed particle detector with performances comparable to the state
of the art

3DET comprises CERN, ETH Zurich, HEIG-VD, ISMA

- The collaboration can profit from expertise in particle detector development, scintillator materials and additive manufacturing
- Started a new collaboration with Ip2I Lyon on muon tomography with 3D printed detectors
- Open to extend the collaboration to new institutes dedicated to particular developments

More informations can be found at https://threedet.web.cern.ch

Backup

3D printed optical reflector

Polymer pellets

Polymer mixed with TiO ₂	Reflectivity at $\lambda = 420 \text{ nm} (\%)$
ABS	87.5
HIPS	87.1
PC	76.1
PMMA	90.6
PS	91.1

Similar reflectivity to TiO₂ paint but less than Tyvek and PTFE (no air gap, lower reflection, surface roughness)

Reflective pigment TiO2 (or BaSO4, MgO...)

Reflective filament

Towards a 3D printed SuperCube

9 optically isolated cubes ready to be directly coupled to SiPM (no post-processing)

Ready to be instrumented with photosensors and electronics \rightarrow particle detector

The 3D printed SuperCube

SuperCube Beam test

- Cube channels:
 - 5*5 X + 5*5 Y channels
 - Read out with Hamamatsu SiPM S13360-1325CS (PDE~25%)
- Hodoscope channels:
 - 16 X + 16 Y Kuraray square scintillating fibers of 1mm.
 - covering 1.6 cm * 1.6 cm area of the supercube center.
- Beam component:
 - CERN T9 from Proton Synchrotron
 - Downstream of calormeter -> mainly MIPs.

SuperCube Beam test - Non-uniformity

X channel:

- Max non-uniformity: -19% ~ 12% Y channel:
- Max non-uniformity: -16% ~ 12%

column of the SuperCube.

- Std. of each map was taken and

uniformity between different cubes.

plotted above to show the non-

hodoscopes)

center cubes (average of 5 cubes

High light yield region around the

in the center covered by the

fibers can be seen clearly

Inorganic scintillator

We 3D printed inorganic scintillator for registration of Ionizing and X-ray radiation

Possibility to further develop the technology even for sampling calorimeters