R&D on a high-performance electromagnetic calorimeter based on oriented crystalline scintillators

CALOR 2024

Tsukuba つくば市 May 21th, 2024

Mattia Soldani

on behalf of the OREO project

mattia.soldani@lnf.infn.it

lattice random orientation

in <u>amorphous media and randomly oriented</u> crystals

electromagnetic <u>interactions occur with one</u> <u>particle at a time</u>, in an <u>incoherent</u> succession of mutually independent events

2

CALOR 2024

lattice ON AXIS

 ψ_{L}

Lindhard (1965)

single-atom potentials from the same string sum up <u>coherently</u> \Rightarrow continuous potential along the direction of the lattice axes

> 🔊 📀 💿 💿 💿 🥥 0 🔿 🔿 💽 🔿 🕥 🥥

 $^{\prime}2\overline{U_{0}}$ lattice potential

in

channelling

e⁺

3

Mattia Soldani

lattice ON axis

energy threshold

- \Rightarrow \geq 10-20 GeV in high-Z, high-density crystals
- ⇒ limited effects already for $\chi \ge 0.1$ i.e. already at the GeV scale

angular acceptance

- ⇒ independent on the energy and, when above threshold, much larger than $\psi_{\rm L}$
- ⇒ $\leq 1 \text{ mrad}$ in high-Z, high-density crystals but CB contributes up to ~1°

⇒ Strong Field

enhanced hard photon emission
(= quantum synchrotron radiation)

enhanced pair production

the on-axis em cascade

(not an actual G4 event – for visualisation only)

CALOR 2024

the on-axis em cascade

Bandiera et al. (2023)

shower front is shorter due to the SF effects on the primary and early core

oriented crystal

amorphous

peak is at smaller depth

- peak depth is essentially <u>independent on the primary</u> <u>energy and type</u>
- effect gradually decreases as the shower develops
 ⇒ shower tail is unaffected by the lattice orientation

Mattia Soldani

Mattia Soldani

aim

from the full characterisation of lattice-borne effects to the shower <u>development in oriented PWO</u> (lead tungstate)

- simulation models \bigcirc
- measurements with different particles at increasing thickness Ο

to the development and test of an oriented crystal-calorimeter demonstrator

- compactness Ο
- improved energy resolution 0
- improved particle ID 0

PWO-undoped (S3) PWO-II (S1) PWO-II (S2)

PWO-UF (S5)

PWO-UF (S6)

moderately fast ~10 ns

BRAND NEW!

appealing for future detectors...

- **PWO-II** (for PANDA)
 - about same decay time Ο
 - twice the light yield 0.6% of Nal ↗
- **PWO-U**ltra Fast

Annenkov *et al.* (2002)

- slightly worse light yield 0.2% of Nal
- impressive decay time ~640 ps! 7

Pb**WO**₄ as a crystal

two of the highest-field axes:

our measurement campaign

2017-19

our measurement campaign

first observation of SF effects to radiation in oriented PWO: <u>Bandiera *et al.* (2018)</u>

0.45 X₀ proof of concept

- probed with 120 GeV/c e⁻ @ CERN SPS H2 5.6 GeV/c e⁻ (no SiPMs) @ DESY T21
- SiPM: AdvanSiD ASD-NUV4S-P Soldani et al. (2022)

2021 1, 2 *X***₀ getting thicker**

- probed with 120 GeV/c e⁻ @ CERN SPS H2
 1-100 GeV γ @ CERN SPS H2
- SiPM: onsemi ARRAYC-60035-4P-BGA arrays
 - ⇒ standardisation Selmi *et al.* (2023)

our measurement campaign

2023

5 Xo arrays time to go multi-cell

- probed with 5-15 GeV/c e⁻ @ CERN PS T9 40-150 GeV γ @ CERN SPS H2
- SiPM: <u>onsemi ARRAYC-60035-4P-BGA</u> arrays
- cells glued to one another and optically isolated

3x1

2022 4.6 Xo THICKER

- \circ probed with 100, 120 GeV/c e^- @ CERN SPS H2
- SiPM: <u>onsemi ARRAYC-60035-4P-BGA</u> arrays on the back
- preliminary test of (purely mechanical) mutual alignment between 2 identical samples and shower sharing

hor. misalignment angle [mrad]

13

towards a fine-segmentation ECAL

crystals mutually aligned within ~Oo/2 maximum

gluing procedure

- preliminary lattice characterisation with laser autocollimator and HRXRD
- on roto-translational adjusters → real-time corrections of relative miscut
- Fizeau interferometry for real-time check

a selection of our results

em interactions in oriented PWO LY enhancement

15

- light output is highly sensitive to the lattice effects
 - \rightarrow not only the strong axes, also higher-order planes
 - \rightarrow light spectrum modification even at < X_0
- excellent agreement with G4 simulations (energy deposit)

em interactions in oriented PWO shower acceleration

CALOR 2024

Mattia Soldani

16

em interactions in oriented PWO shower acceleration

thickness [X ₀]	effective thickness [X ₀]	thickness enhancement [%]			
0.45	0.745	165.48			
1	1.520	151.98			
2	2.923	146.17			
4.6	6.208	134.96			
raduction of the offective Vel					

CALOR 2024

17_____

Mattia Soldani

em interactions in oriented PWO electrons vs photons

Mattia Soldani

 data with bremsstrahlung photons between 1 and 10 GeV

• extrapolation to 120 GeV

1 X_

 $a \cdot \log (bE_{\gamma} - c)$

 \rightarrow consistent with the data collected with 120 GeV/c electrons at different misalignment angles

(accounting for the e^{\pm}/γ development difference)

em interactions in oriented PWO

- enhancement is angle-dependent
 - → sharp peak at $\lesssim \Theta_0 \sim 1 \text{ mrad}$
 - → still different from random at ~1°
- width is sample dependent
 - \rightarrow depends on sample mosaicity
 - → shower develops more in thicker samples ⇒ more lower-energy secondaries, within range of channelling (ψ_L) and CB (~10 ψ_L)

em interactions in oriented PWO vs hadronic interactions

 X_0 (em) is reduced, whereas λ_{int} (hadronic) is unaffected \Rightarrow y/hadron discrimination

PRELIMINARY measurements

PWO preshower on goniometer in front of Pb glass block

G4 simulation studies

y/n populations with initial energy 26-151 GeV in a highly segmented PWO full calorimeter:

exciting times ahead!

several progress throughout the years in

- probing crystalline SF effects
- developing sound simulation tools + integration with Geant4
- designing an operational longitudinally segmented, oriented-calorimeter prototype

getting ready for integration in

keep track of the lattice orientation to avoid uncontrolled lattice effects when building a crystal calorimeter!

space-borne γ-ray (VHE/UHE) detectors with pointing systems à la Fermi LAT

- reduced thickness ⇒ more payload available for transverse size increase ⇒ acceptance
- o improved shower containment ⇒ less longitudinal leakage
- $\circ \quad \text{higher } \gamma \text{ efficiency} \\$
- \circ better γ /hadron discrimination

forward-geometry accelerator-based experiments fixed-target collider forward region

- o improved shower containment
 ⇒ energy resolution
- higher γ efficiency \Rightarrow ideal for γ vetoes
- better γ/hadron discrimination ⇒ ideal for γ/n in small-angle calorimeters on neutral hadron beamlines e.g. HIKE <u>CERN-SPSC-2022-031</u>

thank you! どうもありがとう!

any comments or questions? contact me at mattia.soldani@Inf.infn.it!

supplemental material

the **OREO** team

N. Argiolas^{a,b}, L. Bandiera^c, V. Baryshevsky^d, L. Bomben^{e,f}, C. Brizzolari^{e,f}, N. Canale^c, S. Carsi^{e,f}, S. Cutini^g, F. Davì^{h,c}, D. De Salvador^{a,b}, A. Gianoli^c, V. Guidiⁱ, V. Haurylavets^d, M. Korjik^d, G. Lezzani^{e,f}, A. Lobko^d, F. Longo^{j,k}, L. Malagutti^c,
S. Mangiacavalli^{e,f}, V. Mascagna^{e,f}, A. Mazzolari^{c,i}, L. Montalto^h, P. Monti-Guarnieri^{c,i,**}, M. Moulson¹, R. Negrello^{c,i}, G. Paternò^c, L. Perna^{e,f}, C. Petroselli^{e,f}, M. Prest^{e,f},
D. Rinaldi^{h,1}, M. Romagnoni^{c,i}, F. Ronchetti^{e,f,*}, G. Saibene^{e,f}, A. Selmi^{e,f}, F. Sgarbossa^{a,b}, M. Soldani¹, A. Sytov^c, V. Tikhomirov^d, E. Vallazza^f

^aUniversità degli Studi di Padova, Padua, Italy ^bINFN Laboratori Nazionali di Legnaro, Legnaro, Italy ^cINFN Sezione di Ferrara, Ferrara, Italy ^dInstitute for Nuclear Problems, Belarusian State University, Minsk, Belarus ^eUniversità degli Studi dell'Insubria, Como, Italy ^fINFN Sezione di Milano Bicocca, Milan, Italy ^gINFN Sezione di Perugia, Perugia, Italy ^hUniversità Politecnica delle Marche, Ancona, Italy ⁱUniversità degli Studi di Ferrara, Ferrara, Italy ^jUniversità degli Studi di Trieste, Trieste, Italy ^kINFN Sezione di Trieste, Trieste, Italy

planes vs axes

scintillating media

inorganic (crystals)

- A high-Z → homogeneous calorimeters
- typically slow > ns, up to µs
 & tradeoff between LY and timing
- many technological challenges (growth, machining, support...)
- ▶ expensive
- LY depends on temperature $O(\%/^{\circ}C)$

organic (plastic)

- \searrow low density and Z
- ↗ fast response ≤ ns
- easy to handle and scale
- comparatively easier to craft
- comparatively cheaper
- ⇒ ideal active medium in sampling calorimeters

(common) inorganic scintillators

Parameter Units:	: $ ho$ g/cm ³	MP °C	X_0^* cm	R_M^* cm	dE^*/dx MeV/cm	λ_I^* cm	$ au_{ m decay}$ ns	$\lambda_{ m max}$ nm	n^{\natural}	$\begin{array}{c} \text{Relative} \\ \text{output}^{\dagger} \end{array}$	Hygro- scopic?	d(LY)/dT %/°C [‡]
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	245	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF_2	4.89	1280	2.03	3.10	6.5	30.7	650^{s}	300^{s}	1.50	36^s	no	-1.9^{s}
							0.9^{f}	220^{f}		4.1^{f}		0.1^f
$\operatorname{CsI}(\operatorname{Tl})$	4.51	621	1.86	3.57	5.6	39.3	1220	550	1.79	165	slight	0.4
CsI(Na)	4.51	621	1.86	3.57	5.6	39.3	690	420	1.84	88	yes	0.4
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	30^s	310	1.95	3.6^{s}	slight	-1.4
PbWO ₄	8.30	1123	0.89	2.00	10.1	20.7	6^f 30^s 10^f	425^{s} 420^{f}	2.20	1.1^{f} 0.3^{s} 0.077^{f}	no	-2.5
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	85	no	-0.2
PbF ₂	7.77	824	0.93	2.21	9.4	21.0	-	-	- (Cherenkov	v no	-
CeF ₃	6.16	1460	1.70	2.41	8.42	23.2	30	340	1.62	7.3	no	0
LaBr ₃ (Ce)	5.29	783	1.88	2.85	6.90	30.4	20	356	1.9	180	yes	0.2
CeBr_3	5.23	722	1.96	2.97	6.65	31.5	17	371	1.9	165	yes	-0.1

* Numerical values calculated using formulae in this review.

[‡] Refractive index at the wavelength of the emission maximum.

[†] Relative light output measured for samples of 1.5 X_0 cube with a Tyvek paper wrapping and a full end face coupled to a photodetector. The quantum efficiencies of the photodetector are taken out.

[‡] Variation of light yield with temperature evaluated at the room temperature.

f =fast component, s = slow component

more on PWO and its generations

Z/A	0.41315
$ ho ~[{ m g/cm^3}]$	8.3
Standard X_0 [mm]	8.903
Standard $R_{\rm M}$ [mm]	19.59
$E_{ m C}~{ m for}~e^-~[{ m MeV}]$	9.64
$E_{ m C} { m for} e^+ [{ m MeV}]$	9.31
Nuclear collision length [mm]	121.2
Nuclear interaction length [mm]	202.7
Pion collision length [mm]	152.1
Pion interaction length [mm]	240.4

	PWO-I	PWO-II	PWO-UF	
$ ho~[{ m g/cm^3}]$	8.28 [30]	8.28 [198]	8.27 [201]	
Scintillation max. [nm]	420 [30]	420 [198]	420 [201]	
$ m LY~[ph.e^-/MeV]$	8-12 [205]	17-22 [205]	7 [201]	
LY rel. to NaI [%]	0.3 [30]	0.6 [198]	about 0.2	
T. [ne]	10-30 [30, 205]	10-30 [30, 205]	0.64 [201]	
decay [IIS]	6.5 [198]	6.5 [198]		
$-\mathrm{dLY}/\mathrm{dT}$ [%/°C]	2.5 [30]	3 [205]	about 0.4 [201]	
dk [1/m]	1.5 [205]	1 [205]	0.3 [201]	

see Soldani, PhD thesis (2023) and references therein

our PWO samples

29

other beamtest setups

30

beamtest setup

input tracking modules

 \approx 2×2 cm² xy double-sided Si microstrip sensors, with 50 µm readout pitch, analog readout and an overall \approx 10 µm single-hit resolution

pairs of $\approx 10 \times 10$ cm² single-sided Si microstrip sensors, with 242 µm readout pitch, analog readout and an overall ≈ 35 µm single-hit resolution

e e plastic scintillators charged multiplicity counter Si microstrip layers crystal on goniometer y

output charged multiplicity counter

one or more ≃10×10 cm² plastic scintillator pads read out by PMTs

goniometer

fine-grained, remote-controlled movements along *x*, *y*, θ_x and θ_y with ~5 µm/µrad resolution

beamtest setup

different calorimeters along the years:

- Stefi: 3×3 matrix of PWO blocks from the CMS endcap, SiPM-based readout
- Genni: 3×3 matrix of BGO blocks from the PADME calorimeter, PMT-based readout
- (OPAL) Pb glass blocks read out by PMTs

the Active Photon Converter was installed and tested for the first time during the 2019 beamtest at DESY T21 \rightarrow scintillating pads and a Cu converter layer, statistical information on the output photon number distribution

Stefi

sample (pre-)alignment

crystal simulation framework

sub- X_0 crystals

Baier, Katkov & Strakhovenko (1998) semiclassical method: simulation of the (classical) trajectories inside the crystalline lattice with (quantum) radiation emission

⇒ Direct Integration of the Baier-Katkov method implemented by INP BSU & INFN Ferrara

Energy of γ , GeV

multi- X_0 crystals

DIBK applied to thin crystal slices at different energies and angles \Rightarrow radiation and PP probabilities at different energies are averaged over the angles and used to <u>rescale the Geant4 standard</u> <u>cross sections</u>

Geant4 rescaling factors for PWO 001 Baryshevsky et al. (2017)

em interactions in oriented PWO electrons vs positrons

120 GeV/c electrons/positons on

the HIKE Small Angle Calorimeter

Tank

100

LAV16-18 LAV19-21

200

Large Angle Veto:

Fiducial Volume

150

LAV12-15

lectromagnetic

Calorimete

LAV12-25

Charged Particle Veto

Preshower Detector

phase 3 signal: $K_{\perp} \rightarrow \pi^0 \nu \overline{\nu}$

i.e. two detected photons and missing momentum

main harmful <u>background</u> channels:

- $K_{\rm L} \rightarrow \pi^0 \pi^0$ where two photons get lost
- $\Lambda \rightarrow \pi^0 n$ from upstream

photon reconstruction is critical!

CERN-SPSC-2022-031

at this point:

HIKE Phase 3 (KLEVER)

Magnet

Target

0 5 10

Z [m]

140 MHz (mean ≈27 GeV/*c*) *K*_L

vs 440 MHz neutrons 198 MHz photons >1 GeV 53 MHz photons >5 GeV 4.1 MHz photons >30 GeV

many neutrons in the beam!

fully hermetic, high-efficiency photon detection apparatus

Calorimete

250

along the beam path: Small Angle Calorimeter

- \Rightarrow very low photon inefficiency <10⁻⁴ at > 30 GeV, <1% between 5 and 30 GeV
- ⇒ insensitivity to neutrons
- ⇒ good photon/neutron disambiguation capability
- ⇒ high time resolution ≤100 ps
- ⇒ two-pulse disambiguation ≈ ns
- \Rightarrow radiation hardness