Innovative nanocrystal-based scintillators for next-generation sampling calorimeters

CALOR 2024

Tsukuba つくば市 May 21th, 2024

Mattia Soldani

on behalf of the NanoCal project

mattia.soldani@Inf.infn.it

drive

next-generation **scintillating calorimeters** at the **intensity frontier** demand

- faster response
- higher radiation resistance
- reasonable light output than currently available

inorganic (crystals)

- A high-Z → homogeneous calorimeters
- typically slow > ns, up to µs
 & tradeoff between LY and timing
- many technological challenges (growth, machining, support...)
- 🕨 expensive
- LY depends on temperature $O(\%/^{\circ}C)$

organic (plastic)

- \searrow low density and Z
- ✓ fast response \leq ns
- easy to handle and scale
- comparatively easier to craft
- comparatively cheaper
- ⇒ ideal active medium in sampling calorimeters

CALOR 2024 Mattia Soldani

state-of-the-art plastic scintillators

- PVT matrix Ο
- long optical attenuation Ο length 380 cm \Rightarrow good LY 10k ph/MeV
- rather fast 2.1 ns Ο

- PVT matrix \cap
- optimised for ultra-fast Ο response 700 ps
- shorter attenuation 0 length 10 cm
- worse LY 2.9k ph/MeV 0

EJ-232 AND EJ-232Q EMISSION SPECTRUM

the NanoCal project

aim develop new high-performance nanocomposite (NC) scintillators

emission:

UN-A

take the best of two worlds:

polymeric matrix v

with addition of quantum dots

 \dot{c} \dot{c} thermal \dot{c} \dot{c} thermal \dot{c} \dot{c} \dot{c} thermal \dot{c} \dot

PolyMethyl MethAcrylate

 $C_5H_8O_2$ ⇒ no emission from the matrix ⇒ new primary emission components

- semiconductor nanocrystals emission properties e.g.
 - absorption/emission wavelengths
 - emission time

depend on the (tunable) size O(1-10 nm)

- \Rightarrow additional WLS to avoid reabsorption by the matrix
- ⇒ access to larger-wavelength emission
 - → less affected by radiation-induced colour centres rad-hard to O(<u>1 MG</u>y)
- ⇒ overall emission time decrease: substantial fraction of emission in O(<u>100 ps</u>)!

e.g. **CsPbBr₃** Cesium Lead Bromide perovskite in PVT + PTP

the NanoCal project

5

aim develop new high-performance nanocomposite (NC) scintillators

Erroi et al ACS Energy Lett. 2023, 8, 3883

aim application in **fine-sampling calorimeters**

benchmark **PANDA** <u>Singh *et al* **arXiv**:1704.02713</u> **KOPIO** <u>Atoian *et al* **arXiv**:0709.4514</u> **shashlik calorimeter**

- Pb (275 µm) + PS-based scintillator (1.5 mm)
 ⇒ sampling fraction ~47%
- scintillator: PS + PTP_{1.5%} + POPOP_{0.04%} from Protvino
- WLS fibres: <u>Kuraray Y-11(200)</u>
- APD-based readout
- overall prototype resolution:

 $\sigma_{\rm E}/E = (1.96 \pm 0.1)\% \oplus (2.74 \pm 0.05)\% / \sqrt{E \,({\rm GeV})}$

$$\sigma_{\rm T} = \frac{(72 \pm 4)\,\mathrm{ps}}{\sqrt{E\,(\mathrm{GeV})}} \oplus \frac{(14 \pm 2)\,\mathrm{ps}}{E\,(\mathrm{GeV})}$$

our (current) concept

- 300 μ m Pb \Rightarrow sampling fraction ~45%
- scintillator: testing molecular and NC options...
- scintillator-dependent WLS fibres
- different readout choices
 - → SiPMs e.g. <u>Hamamatsu S13360-6050CS</u>
 - → wide-range PMTs e.g. <u>Hamamatsu R7600U series</u>
- \Rightarrow currently testing 1 X_0 single towers...

CALOR 2024 Mattia Soldani

towards an operational shashlik...

⇒ first unit module generation,
 built and tested in Spring 2023

X₀

Custom N PVT/DVB Kuraray Y PMMA/PI Kuraray C

PMMA/PLMA_{80/20%} + CsPbBr_{30.2%}

custom NCA-1 fibres*

PVT/DVB_{90/10%} + benzothiophene_{.04%}

Kuraray Y-11(200) fibres

PMMA/PLMA_{80/20%} + CsPbBr_{30.2%}

Kuraray O-2(100) fibres

PMMA/PLMA_{80/20%} + CsPb(Br,Cl)_{30.2%} + coumarin-6 custom NCA-1 fibres*

from Kuraray, with 200 ppm perylene dyad

more investigation is needed!

- ⇒ excellent performance of the reliable combo of Protvino-like scintillator and Y-11 fibres
- \Rightarrow only detectable signal from the NC-based modules comes from the fibres
 - PMMA matrix, no PTP, low perovskite concentration
 → insufficient matrix-nanocrystal energy transfer
 - reabsorption by the nanocrystals

let's take one step back

our nanocomposite samples produced @ UniMiB

$PVT/DVB_{90/10\%} + PTP_{\alpha} + \gamma^*:CsPbBr_{\beta} + perylene dyad_{\delta}^{\dagger}$								
	α	β	Υ*	δ	optical features (visual inspection)			
Blank_0	0	0	-	0	transparent, colourless			
Blank_1	1.5%	0	-	0	transparent, colourless			
Blank_2	0	0	-	<mark>> 0</mark>	transparent, orange			
Blank_3	1.5%	0	-	<mark>> 0</mark>	transparent, orange			
NC23_2	1.5%	1.5%	Yb	0	a bit opaque, green			
NC23_4	1.5%	1.5%	Yb	<mark>>0</mark>	a bit opaque, <mark>orange</mark>			
NC24_0	0	1.5%	F	0	opaque, green			
NC24_1	0	2.5%	F	0	very opaque, green			
NC24_2	1.5%	1.5%	F	0	opaque, green			
NC24_3	0	1.5%	F	<mark>>0</mark>	very opaque, orange			
NC24_4	1.5%	1.5%	F	<mark>>0</mark>	very opaque, orange			

surface passivation to allow use of perovskite in thermally polymerised matrix

our molecular samples produced @ UniMiB

also studying innovative fully molecular recipes

CALOR 2024

under UV light

Mattia Soldani

commercial reference

latest measurements Apr 2024 @ LNF BeamTest Facility

aim to measure the single-particle light

Buonomo et al arXiv:2308.03058

PROBE

450 MeV electrons, spot size ~400 µm

SETUP

FitPix unit and Pb glass block to measure electron multiplicity \Rightarrow single-particle selection

TEST DEVICE

sample (6.7 mm thick, 14.3 mm \emptyset) Ο coupled to SiPM (Hamamatsu S13360-6050CS) w/ surface index matching

TIA gain G = 4.870

$$Q = \frac{1}{Z_{\rm in}G} \int V_{\rm out}(t) \mathrm{d}t$$

background & matrix

- signal from PVT alone differs from that obtained in background runs
 - \searrow PVT emission large- λ tail in SiPM range
 - ↘ Cherenkov component
- significant light emitted (> 300% PVT only) by the PTP-doped matrix

- LY ratio between EJ200 (<u>datasheet</u>: 10k ph/MeV) and EJ200Q (<u>datasheet</u>: 2.9k ph/MeV) <u>correctly</u> <u>reproduced</u>
- **Protvino-like** sample is competitive

Apr 2024 @ LNF BeamTest Facility single-electron spectra

perovskite unshifted

recall that NC23_2 and NC24_2 feature the same recipe (but different quantum dot passivation and different NC batch)

- LY is overall low always lower than Blank_1
 - → perovskite seems to block part of the light emitted by the (PTP-doped) matrix
- without PTP, the LY with perovskite is significantly below that of PVT-only
 - → no light, regardless of the nanocrystal concentration
- NC24_2 performs more poorly than NC23_2

→ although concentration is the same, NC23_2 appears to be overall more transparent, albeit non uniformly

single-electron spectra Apr 2024 @ LNF BeamTest Facility

back

front

spatial dependence \rightarrow

17

Blank 0, mpv = 14 pC 0.030 Blank 1, mpv = 47 pC 0.025 Blank 2, mpv = 14 pCBlank 3, mpv = 48 pC 0.020 NC24 3, mpv = 13 pC NC23 4, mpv = 50 pC NDQdQ 0.015 NC24 4, mpv = 27 pC 0.010 0.005 20 40 80 100 60 Q [pC]

perovskite + perylene

recall that NC23_4 and NC24_4 feature the same recipe (but different quantum dot passivation and different NC batch)

- full matrix+perovskite+perylene (NC23_4) performs slightly better than the corresponding blank
- NC24 lot with perylene has the same issues as the green lot: in both cases, their LY is down to almost 50% that of the NC23 generation
- **without PTP**, performance is approximately that of the **sole matrix**
- Blank_2/3: perylene does not seem to affect the performance of their counterparts (Blank0/1)
- few-% front-back LY asymmetry in NC23_4

Apr 2024 @ LNF BeamTest Facility single-electron spectra

molecular

- Mol_2 (matrix + coumarin-6) is the worst among our fully molecular sample; it attains exactly the same signal distribution as EJ232Q
- Mol_1 (matrix + benzothiophene) features >30% higher LY than EJ232Q
- Mol_3 (matrix + benzothiophene + coumarin-6) performs about like Mol_0 (Protvino-like), i.e. ~150% EJ232Q and ~50% EJ200

⇒ very promising!

pending evaluation of timing performance and radiation hardness

and there is more...

18

Mattia Soldani

including

 emission spectra, so far measured for the molecular and NC23 sample lots

• SiPM PDE

allows for a fair comparison between our most promising samples...

sample	charge MPV [pC]	COTT. [% Protvino-like]	charge MPV [pC Protvino-like eq.]	[% Protvino-like]
Mol_0 Protvino-like	104	100	104	100
EJ200	211	96.5	203.6	194.3
EJ232Q (0.5%)	69	115.3	79.6	75.9
Mol_1	91	97.9	89.1	85.2
Mol_2	69	111.0	76.6	73.0
Mol_3	100	103.1	103.1	99.0
NC23_2	40	106.2	42.5	40.1
NC23_4	50	121.0	60.5	58.0

disappointing results on NC samples in terms of

- overall performance
- consistency between batches

20

upcoming beamtest Jul 2024 @ LNF BTF

setup optimised for timing measurements fast T0 reference, fast PMT e.g. <u>Hamamatsu R14755U-100</u>

upcoming beamtest Sept 2024 @ CERN T9

- commissioning of 4-channel, calorimetric-scale module with Protvino-like scintillator purchased from <u>ISMA</u> ⇒ will serve as test bench for photodetectors, fibres, coupling, mechanics
- test of new unit modules based on Mol_3 and perhaps novel NC recipes

plans for 2025

- irradiation tests @ ENEA Casaccia
- dig even deeper into the NC light output mystery

promising results from the molecular scintillators, which might be ready for integration in test detectors

the features of <u>nanocomposite</u> <u>scintillators are puzzling</u>: more investigation is needed on

- \searrow the compositions
- \searrow the production techniques

the <u>calorimeter development</u> will naturally follow...

thank you! どうもありがとう!

any comments or questions? contact me at *mattia.soldani@lnf.infn.it*!

This project has received funding from the European Union's Horizon 2020 Research and Innovation program under the AIDAinnova project, grant no. 101004761, WP 13.5 (NanoCal)

Council

supplemental material

the NanoCal team

A. Antonelli^a, E. Auffray^b, S. Brovelli^{c,d}, F. Bruni^c, M. Campajola^{e,f}, S. Carsi^{g,h},
F. Carulli^c, G. De Nardo^{e,f}, E. Di Meco^{a,i}, E. Diociaiuti^a, A. Erroi^c, M. Francesconi^f,
I. Frank^{b,j}, S. Kholodenko^k, N. Kratochwil^{b,*}, E. Leonardi^l, G. Lezzani^{g,h},
S. Mangiacavalli^{g,h}, S. Martellotti^a, M. Mirra^f, P. Monti-Guarnieri^{m,n,**}, M. Moulson^a,
D. Paesani^{a,i}, E. Paoletti^a, L. Perna^{g,h}, D. Pierluigi^a, M. Prest^{g,h}, M. Romagnoni^{m,n},
A. Russo^a, I. Sarra^a, A. Selmi^{g,h}, F. Sgarbossa^{o,p}, M. Soldani^a, R. Tesauro^a, G. Tinti^a,
E. Vallazza^h

^aINFN Laboratori Nazionali di Frascati, Frascati, Italy ^bCERN, Meyrin, Switzerland ^cUniversità degli Studi di Milano Bicocca, Milan, Italy ^dGlass to Power SpA, Rovereto, Italy ^eUniversità degli Studi di Napoli Federico II, Naples, Italy ^fINFN Sezione di Napoli, Naples, Italy ^gUniversità degli Studi dell'Insubria, Como, Italy ^hINFN Sezione di Milano Bicocca, Milan, Italy ⁱUniversità degli Studi di Roma Tor Vergata, Rome, Italy ^jLudwig-Maximilians-Universität München, Munich, Germany ^kINFN Sezione di Pisa, Pisa, Italy ¹INFN Sezione di Roma, Rome, Italy ^mUniversità degli Studi di Ferrara, Ferrara, Italy ⁿINFN Sezione di Ferrara, Ferrara, Italy ^oUniversità degli Studi di Padova, Padua, Italy ^pINFN Laboratori Nazionali di Legnaro, Legnaro, Italy

(common) inorganic scintillators

Parameter Units:	: $ ho$ g/cm ³	MP °C	X_0^* cm	R_M^* cm	dE^*/dx MeV/cm	λ_I^* cm	$ au_{ m decay}$ ns	$\lambda_{ m max}$ nm	$n^{ atural}$	$\begin{array}{c} \text{Relative} \\ \text{output}^{\dagger} \end{array}$	Hygro- scopic?	$d(LY)/dT$ $\%/^{\circ}C^{\ddagger}$
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	245	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF_2	4.89	1280	2.03	3.10	6.5	30.7	650^{s}	300^{s}	1.50	36^s	no	-1.9^{s}
							0.9^{f}	220^{f}		4.1^{f}		0.1^f
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1220	550	1.79	165	slight	0.4
CsI(Na)	4.51	621	1.86	3.57	5.6	39.3	690	420	1.84	88	yes	0.4
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	30^s	310	1.95	3.6^{s}	slight	-1.4
$PbWO_4$	8.30	1123	0.89	2.00	10.1	20.7	6^{f} 30^{s} 10^{f}	425^{s} 420^{f}	2.20	1.1^{f} 0.3^{s} 0.077^{f}	no	-2.5
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	85	no	-0.2
PbF_2	7.77	824	0.93	2.21	9.4	21.0	-	-	- (Cherenkov	v no	-
CeF ₃	6.16	1460	1.70	2.41	8.42	23.2	30	340	1.62	7.3	no	0
LaBr ₃ (Ce)	5.29	783	1.88	2.85	6.90	30.4	20	356	1.9	180	yes	0.2
$CeBr_3$	5.23	722	1.96	2.97	6.65	31.5	17	371	1.9	165	yes	-0.1

* Numerical values calculated using formulae in this review.

[‡] Refractive index at the wavelength of the emission maximum.

[†] Relative light output measured for samples of $1.5 X_0$ cube with a Tyvek paper wrapping and a full end face coupled to a photodetector. The quantum efficiencies of the photodetector are taken out.

[‡] Variation of light yield with temperature evaluated at the room temperature.

f =fast component, s = slow component

pure PVT spectra

from Nakamura et al NIM-A 770 (2015) 131

(co)dopants

DiVinylBenzene

crosslinker: strengthens the matrix

Poly Lauryl MethAcrylate

- improves perovskite miscibility
- preserves quantum dot optical features

EJ232 quenching

	EJ-232	EJ-232Q (% Benzophenone)					
rkoreknes		0.5	1.0	2.0	3.0	5.0	
Light Output (% Anthracene)	55	19	11	5	4	3	
Scintillation Efficiency (photons/1 MeV e ⁻)	8,400	2,900	1,700	770	610	460	
Wavelength of Maximum Emission (nm)	370	370	370	370	370	370	
Rise Time (ps)	350	110	105	100	100	100	
Decay Time (ps)	1600	700	700	700	700	700	
Pulse Width, FWHM (ps)	1300	360	290	260	240	220	

the world of scintillating perovskites

effect of coumarin-6

\Rightarrow strong blue-to-green WLS:

synthesis of CsPbBr₃

substitution of 50% of Br with Cl

addition of coumarin-6

for the primary (matrix + quantum dot) spectra to be peaked in blue ⇒ can shift to green

Apr 2024 @ LNF BeamTest Facility the beam

