

The Mu2e Electromagnetic Calorimeter

L. Morescalchi INFN Pisa, Italy On behalf of the Mu2e calorimeter group

INFN The Mu2e experiment @ Fermilab

Mu2e searches for the muon to electron conversion in the field of an Aluminum nucleus.

- → CLFV process strongly suppressed in Standard Model: BR ≤10⁻⁵²
- \rightarrow Its observation is BSM physics \rightarrow Goal: 10⁴ improvement w.r.t. current sensitivity

Nuclear captures of muonic Al atoms

- Low momentum pulsed muon beam stopped in AI target (10 GHz) Х
- Muons trapped in orbit around the nucleus Χ
- $\mu N \rightarrow e N$ signature \rightarrow mono-energetic electron @ 105 MeV Х

Production & Transport Solenoids

Calorimeter Requirements

For the $\mu \rightarrow e$ conversion search, the calorimeter adds redundancy and complementary qualities with respect to the high precision tracking system

- Large acceptance for the mono-energetic electron candidate events
- Particle Identification capabilities with mu/e rejection of 200
- "Seeds" to improve track finding at high occupancy
- A tracking independent trigger

calorimeter

stopping target

straw tracker

For 100 MeV electrons

@ 50 degrees impact angle

- → Provide energy resolution σ_E/E of O(< 10 %)
- → Provide timing resolution $\sigma(t) < 500$ ps
- \rightarrow Provide position resolution < 1 cm
- → Work in vacuum @ 10⁻⁴ Torr and 1 T B-Field
- \rightarrow Survive the harsh radiation environment

INFN

Technological Choice

- Fast signal for Pileup and Timing:
 - τ of emission < 40 ns
 - Fast Digitization (WD) to disentangle signals in pileup
- Crystals with high Light Yield for timing/energy:
 - resolution
 > LY(photosensors) > 20 pe/MeV
- 2 photo-sensors/preamps/crystal for redundancy:
 - reduce MTTF requirement \rightarrow 1 million hours/SIPM
- Radiation Hardness (5 years of running with a safety factor 3):
 - Crystals should survive a TID of 90 krad and a fluence of 3x10¹² n/cm²
 - Photo-sensors should survive 45 krad and a fluence of 1.2x10¹²
 n_1MeV/cm²
- The 1 T magnetic field + the small space suggests \rightarrow SiPMs

best compromise

Undoped CsI + UV-extended SiPMs

- It is radiation hard
- \rightarrow It has a fast emission time
- → Emits at 310 nm

- → 30 % PDE @ 310 nm
- \rightarrow New silicon resin window
- \rightarrow TSV readout, Gain = 10⁶

Mu2e calorimeter design

- ✓ Two annular disks, each one with 674 undoped CsI parallelepiped crystals with square faces:
 - → Crystal dim (34 x 34 x 200 mm³) ~ 10 X₀
 - → Inner/Outer Radius = 374/660 mm
- ✓ Each crystal is read out by two large area UV extended Mu2e SiPM's (14x20 mm²) through a 2mm air gap
- ✓ SiPM glued on copper holders with FEE mounted on SiPM pins
- ✓ Digital electronics at 200 Msps located in near-by electronics crates
- Radioactive source (ala Babar) and laser system provide absolute calibration and monitoring capability

Operate with very high reliability in vacuum and radiation hard environment \rightarrow -10 °C for SiPMs

INFN Mu2e calorimeter engineering

To reduce/handle the neutron induced leakage current,Id, SiPMs should be cooled down (x 2 Id reduction/10 °C) → SiPM running temperature at -10 °C, Coolant at -20°C

Readout Units = SiPM+FEE holder

INFN FEE and Digitization scheme

- MZB → Control and set 20 channels HV, monitor current and temperature of photosensors
- A fast digitizer system is needed due to the high expected pileup and time resolution requirements
 - About 2700 channels, 136 boards
 - Sampling frequency of 200 MHz
 - ADC with 12 bits resolution over 2 V
- Mechanical constraints \rightarrow DAQ crates inside cryostat:
 - Limited space → **20 channels/board**
 - Limited access for maintenance → Reliable design
 - Close to stopping target → Radiation hard electronics
 - Vacuum → Copper plate cooling
- Polarfire Rad-tolerant FPGA from Microchip
- CERN VTRX for optical link readout

INFN Qualification test of electronics

TID @ ENEA Calliope

Final QA/QC tests performed:

- Dose Test of components and boards OK
- B-Field test of DC-DC converters and boards OK
- Neutrons test for DD OK
- Proton test for SEL OK
- Thermal tests in vacuum with copper plate OK

Calibration Source

- Neutrons from a DT generator irradiate a fluorine rich \checkmark fluid (Fluorinert) that is piped to the front face of the disks
- \checkmark The following reaction chain grants photons at 6.13 MeV

 ${}^{19}F + n \rightarrow {}^{16}N + \alpha$ ${}^{16}N \rightarrow {}^{16}O^* + \beta \quad t_{1/2} = 7 \text{ s}$ ${}^{16}O^* \rightarrow {}^{16}O + \gamma(6.13 \text{ MeV})$

- The produced gamma's illuminate uniformly the crystals \checkmark
- Few minutes of data taking calibrate each crystal at O(%) \checkmark

Source DT generator installed in Mu2e hall in its "cave" and final shielding completed

Laser System

- A pulsed green laser illuminates all crystals through a distribution system based on optical fibers and integration spheres
- ✓ Monitor gain variation at level of 0.5%
- ✓ Determine T0's at level of 100 ps
- ✓ Stability at level of few %, monitored with PIN Diodes at laser source. Used at low rate in off-spill gates

In-situ calibration with crossing MIPs, DIO's and other physics processes

Module-0 test beam results

- ✓ Large size calorimeter prototype , 51 Csl crystals, 102 SiPMs, tested with electron beam (50-110 MeV) and v2 version of electronics to measure energy and time resolutions.
- ✓ Results fully satisfied our requirements
- ✓ Green light for Production of components

INFN

INFN Calorimeter Vertical Slice Test

- MB+ DIRAC V2 boards used for full Vertical Slice Test (VST)
- Data collected in vacuum, at low T and with irradiated sensors for 10 months
- Stable operation and reconstruction: template + CFD
- Data taking of CR events triggered with external scintillators

INFN Procurement and QA/QC Status

- ✓ 1500 Pure CsI Crystals (SICCAS) all procured, optical response and dimensionally tested and Tyvek wrapped
- ✓ 4000 Hamamatsu SiPMs all procured and tested (24k cells) for gain, Vb spread, Id spread, MTTF and irradiation
- ✓ 3300 rad-hard FEE (800 lost due to Ukraine Russia war) and calibrated + integrated to SiPM
- ✓ Laser system parts produced
- 70 final Dirac and Mezzanine boards produced in April
 2024, production of the other 80 expected for June 2024
 - boards are being tested for burn-in, thermal cycles and functional readout test

INFN Preparation of Readout Units

□ All Holders + Faraday Cage (RO) assembled and tested

L. Morescalchi @ Calor-2024: Mu2e Calorimeter

Disks Assembly status

All calorimeter mechanical parts built

- Disk-1 (Disk-0) mech structure assembled in June 22 (March 23)
- All crystals stacked on both disks
- CF plates with source tubing, Inner Rings installed
- Crates+FEE plates *installed* and *leak* checked
- Installation feet for rails at Fermilab (March 2023)

Disks Assembly status

Disk-1 – March 2024

Mu2e hall – Feb 2024

For both disks, mechanics, analog electronics and power distribution is completed. Cable routing completed for Disk-1 and 2/3 for Disk-0

At Mu2e Hall:

- ✓ LV/HV power supplies installed
- ✓ Service cables in the south-side done
- ✓ Service cables in the north side in progress

L. Morescalchi @ Calor-2024: Mu2e Calorimeter

INFN Calorimeter Commissioning @ Sidet

Commissioning ½ disk at a time:

- 4 PC servers, 6 DTCs, MTP fibers and breakout fibers
- Readout of 36 boards, EVB + CR selection trigger
- Calibration with Laser + Cosmic Rays

Cosmic-rays calibration can provide in 2-4 hours energy calibration at 1% level and time alignment at 10 ps level

- ❑ The Mu2e CsI+SiPM Calorimeter demonstrated excellent energy (< 10 %) and timing (< 500 ps) resolution @ 100 MeV as proven with electron beams</p>
- □ The most demanding request is to do all of the above in an evacuated region with 1 T axia field and in a rad-hard environment:
 - \rightarrow SiPMs work well under neutron irradiation but need to be cooled down to -10 °C
 - \rightarrow Engineering of cooling and calorimeter mechanics is crucial
- **Production of mechanics, crystals, SiPMs , FEE and FEE-MZB cabling completed**
- ❑ Successful VST carried out with excellent results on timing and energy calibration → Production of Digital electronics advanced (1/2 MZB and DIRAC boards)
- □ Final integration of the detector readout with the TDAQ system underway to allow calorimeter commissioning by collecting CR data from ½ disk/time.
- □ Calibration source and laser system well advanced.
- ❑ Installation and transportation plans are progressing well
 → We plan to move the disks in the Mu2e building in fall 2024

Backup Slides

Crystal Choice

	LYSO	Bar	CsI
Radiation Length X _o [cm]	1.14	2.03	1.86
Light Yield [% NaI(Tl)]	75	4 /36	3.6
Decay Time[ns]	40	0.9 /650	20
Photosensor	APD	R&D APD	SiPM
Wavelength [nm]	402	220 /300	310

LYSO CDR

- Radiation hard, not hygroscopic
- Excellent LY
- Tau = 40ns
- Emits @ 420 nm,
- Easy to match to APD.
- High cost > 40/cc

Barium Fluoride BASELINE-TDR

- (BaF_2)
- Radiation hard, not hygroscopic
- very fast (220 nm) scintillating light
- Larger slow component at 300 nm. should be suppress for high rate capability
- Photo-sensor should have extended UV sensitivity and be "solar"-blind
- Medium cost 10\$/cc

FINAL CHOICE Not too radiation hard

Csl(pure)

- Slightly hygroscopic
- 15-20 ns emission time
- Emits @ 320 nm.
- Comparable LY of fast component of BaF_2 .
- Cheap (6-8 \$/cc)

INFN Production of Crystals and SiPMs

SICCAS

Production of 1500 CsI crystals and 4000 Mu2e SiPMs started in 2018
 QA test at SIDET (FNAL) + irradiation tests at Caltech, HZDR, FNG, Calliope

Crystals

Irradiation of production crystals

- 8 crystals measured;
- LY OK with requirements
- LRU,FT,Eres in specs
- No recovery observed with time

- 2 arrays of 3 6 x 6 mm² UV-extended SiPMs for a total active area of (12x18) mm²
- The series configuration reduces the overall capacity and allows to generate narrower signals

SiPM irradiation with neutron INFN

20

18

- Batch 1-2; Comparison @ -10 °C 2,5 Irradiated up 0.9 10¹² n/cm² 1,5 1 0,5 -3,0 -2,0 -1,0 0,0 -5,0 -4,0
 - 5 SiPMs/batch "passively" neutron irradiated @ Dresden
 - For Mu2e, the max n-flux in SiPM area is of around 4 x10¹⁰ n/cm²
 - Safety Factor 3(MC)x5(Years)x2(Prod) = 1.2 10¹² n/cm²
 - Max I-dark current for operation of 2 mA
 - → Requires cooling of -10 C, Lower operation overvoltage to Vop-3V (for the MU2E series), 20% of PDE relative loss

Calorimeter Installation

