

Setup and COSY Proton Beam Tests of the PANDA Forward Endcap Calorimeter at FAIR

CALOR 2024, Tsukuba, Japan, 21 May 2024

Thomas Held Institut für Experimentalphysik I, Ruhr-Universität Bochum

PANDA at FAIR - Facility for Antiproton and Ion Research

- Accelerator facility at Darmstadt (GSI) under construction
- Primary beams: Protons up to 30 GeV/c, heavy ion beams up to 35 GeV/c (U⁹²⁺)
- Secondary beams: Radioactive beams, antiprotons up to 15 GeV/c
- PANDA at FAIR:
 - Located at slow ramping synchrotron storage ring for internal target (HESR)
 - Stochastic and electron cooling of p beam

Mode:	High Luminosity	High Resolution
$\begin{array}{c} \Delta p/p \\ \overline{\mathcal{L}} [\mathrm{cm}^{-2} \mathrm{s}^{-1}] \\ \mathrm{Stored} \overline{p} \end{array}$	$pprox 10^{-4}\ 10^{32}\ 10^{11}$	$4 \cdot 10^{-5} \ 10^{31} \ 10^{10}$

The **PANDA** Experiment

- pp annihilations, fixed hydrogen target (nuclear target)
- p momenta: 1.5 GeV/c 15 GeV/c
- $\sqrt{s} \le 5.5 \text{ GeV}$
 - Associated production of singly charmed baryons (up to Ω_c)
 - Covering upper mass range predicted for charmonium hybrid states

Exclusive studies require full reconstruction of final states

The **PANDA** Detector

The **PANDA** Target Calorimeter

- PANDA physics: Full reconstruction of multi-photon and lepton-pair channels
- Good energy and spatial resolution for photons up to 15 GeV
- Low energy threshold (10 MeV)
- Full angular coverage (Incl. forward calorimeter)
- High yield
- High background rejection
- Barrel part plus two endcaps
- Homogeneous
- 16000+ lead tungstate crystals

The Forward Endcap of the PANDA Target Spectrometer

- 3856 PbWO₄ crystals
- Crystals read out by Vacuum Photo Tetrodes (VPTTs) and Avalanche Photo Diodes (APDs)

RUB

NIVERSITÄT

- Angular coverage: 5° < θ < 23.6°</p>
- Magnetic field of up to 1.2 T
- Off-pointing geometry

TARGE

OFF-ROW

7=-95

The Forward Endcap of the PANDA Target Spectrometer

- High dynamic range: 3 MeV 12 GeV
- Single crystal hit rates up to 10⁶ s⁻¹
- Radiation dose rate: 125 Gy/a (at full luminosity)

Scintillation Crystals

.

- Crystals: \approx 25 \times 25 \times 200 mm³, slightly tapered

PWO-II type lead tungstate

THE CHARACTERISTICS OF PWO-T AND PWO-II CRYSTALS			
Characteristics	PWO-I	PWO-II	
	(CMS)	(PANDA)	
Luminescence maximum, nm	420	420	
La, Y concentration level, ppm	100	40	
Light yield of full-size (20 cm) crystal with PMT readout (bialkali-cathode)(at room temperature, phe/MeV	8-12	17-22	
Limit of the radiation induced absorption coefficient at 420 nm, m ⁻¹	1.5	1.0	
Light yield temperature coefficient at $T = +20^{\circ} C$, %/ °C	-2.0	-3.0	
Scintillation decay time at room temperature, ns	10 - 30	10 - 30	
EMC working temperature, °C	+18	-25	
Statistical term of EMC energy resolution, %	2.7	2.0	
Expected energy range of EMC	150MeV	10MeV -	
	- 1TeV	10GeV	

THE CHARACTERISTICS OF PWO-I AND PWO-II CRYSTALS

From: Nuclear Science Symposium Conference Record, 2008. NSS '08. IEEE,

http://dx.doi.org/10.1109/NSSMIC.2008.4774932

7 Thomas Held Setup of the PANDA Forward Endcap EMC

The Photo Sensors

8 Thomas Held Setup of the PANDA Forward Endcap EMC

UNIVERSITÄT BOCHUM RUB

The Readout Units: Sensor(s) Plus Preamp(s)

- One photo tube / two APDs per crystal
- Encapsulation of preamps: Casting compound
 - \rightarrow Moisture resistant operation (kV)
- Shielding: Aluminum tube/tape
- Blue LED: Stimulated crystal LY recovery (IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 6, DECEMBER 2013)

The Crystal Units: Crystals plus Readout Units

- Gluing of readout units to crystals
- Extreme requirements to adhesive:
 - ► Δ T = 50 K
 - Substancial differing thermal expansion coefficients (PbWO₄, quartz glass, epoxy)
 - Extreme smooth (polished) crystal surface
 - Radiation hard optical transparancy
- Adhesive: Dowsil RTV 3145 (plus Dowsil primer!)
- Crystals wrapped in 3M DF2000MA mirror foil

The Crystal Submodules

- Submodules comprising 16 (8) crystals
- Mechanical support structure: Carbon fibre alveoles
- Individual interface pieces: Orientation on back plate

The Crystal Submodules

- All submodules precalibrated using cosmics (at -25°C, in upright position)
- Precise determination of external dimensions
- Final step: Fixing carbon fibre alveole to aluminum inserts by injected glue

Temperature Monitoring

- Crystal light yield and APD gain temperature dependent
- High precision monitoring (and regulation) of temperature mandatory
- Dense crystal packing: Need for very thin temperature sensors (Pt wire on Kapton foil, d < 160 μm)
- 500+ sensors in total (2 per submodule)

Temperature Monitoring

Readout boards

- 64 input channels
- 8 piggyback boards on 1 mainboard
- 14-bit ADCs
- Calibration of sensors and boards!

- TDR: Δ*T* < 0.1 ℃
- Resolution: < 0.05 °C

Digitization

- 64 channel Sampling ADC boards
- 80 MS/s, 14 bit resolution
- 32 single ended 50 Ω signal inputs
- Analog shaping stages
- High/low gain splitting

- 2 Kintex-7 FPGAs, online feature extraction
- 2 optical interfaces (SFP, 2 Gbit/s)
- Dedicated cooling crates located in support frame
- Total of about 220 boards

Monitoring System

- Monitoring LY loss, linearity checks
- Modeling scintillation light
- Full dynamic range
- LaBr₃(Ce) based reference system

 10 light pulser modules sitting inside support frame

Monitoring System

LED pulser:

- Blue, green, and red light pulses
- Blue: MOSFET based HV discharge circuit
- Green and red: Kapustinsky pulser
- Compact design: LCD attenuators

(NUCLEAR INST. AND METHODS IN PHYSICS RESEARCH, A 997 (2021) 165167)

Mechanics And Cooling

Cooling: Front/Air

- Front cooling: Plastic tube glued to 0.8 mm aluminum front plate
- Air/nitrogen cooling: Gas pipes running inside coolant supply lines

Cooling Circuit

Build-up at FZ Jülich (COSY)

- Frame errection
 - \rightarrow Submodule mounting
 - $\rightarrow \text{Cabling}$
 - \rightarrow Thermal insulation
- Manipulator arm for submodule mounting borrowed from CMS

COSY Beam Time Setup

- Beam time setup:
 - All VPTT equipped crystals mounted
 - Plus six 16-crystal submodules read out by APDs
 - 864/3856 crystals mounted

Thermal Insulation

- Thermal insulation by vacuum insulation panels
- Two layers with overlapping edges
- Low thermal conductivity, expensive, susceptible

Experimental Setup at COSY Accelerator, Jülich

2.5 GeV/c proton beam on plastic target in 2 m distance from detector

Beamtime Overview by Means of Temperature

- 2 days of DAQ and hardware tests in July 2023
- 2 weeks of test beam in August and September 2023

- PANDA triggerless DAQ not available yet
- No central trigger: Constrained free-running system
- Synchroniziation of clocks and events (external time marks across all SADCs)

PbWO₄ Light Yield vs. Temperature

- MIP peaks nicely shift with temperature
- Light yield dependency about 3 %/ ℃, as expected
- Measured with VPTT-equipped channels (no temperature dependant APD gain involved)

Two-Cluster Events Invariant mass

- Clear MIP peak at \approx 200 MeV/c² photon energy (π^+/π^-)
- Band structure at 120 MeV/c² invariant mass (π⁰)

- Energy correction functions still to be derived/applied
- About 5 MeV/c² resolution (≈ 3.5 %)

Summary

- PANDA forward endcap calorimeter set up (VPTTs) and beam tested in 2023
- First operation of whole system at -25 °C
- 220 TB of compressed waveforms recorded
- Analyses still ongoing (π⁰ calibration)
- Cooling lines and cabling dismounted, preparation for move
- Transport to ELSA, Bonn soon
- Completion (mounting all submodules) and first physics usage at Crystal Barrel experiment

research and innovation programme under grant agreement No 824093

