Dual-readout calorimetry with homogeneous crystals

Bob Hirosky

for the Calvision Team

CALVISION co-PIs

Alberto Belloni Chris Tully Sarah Eno Bob Hirosky Sergei Chekanov Steve Magill Nural Akchurin Harvey Newman Ren-Yuan Zhu Jim Hirschauer Hans Wenzel Jianming Qian Bing Zhou Junjie Zhu Andreas Jung Marcel Demarteau Phil Harris Jim Freeman Shuichi Kunori

Future colliders and calorimetry

The next international collider will most likely be an e+e- collider, Higgs factory with capabilities of numerous precision measurements at the EW scale.

FCC-ee at CERN

Jet energy resolution is a key benchmark of e+e- detector performance

- eg, Need calorimeters w/ ΔE/E ~ 3-4% for jets ~100 GeV to separate hadronic W's Z's
- Very hard to achieve with traditional calorimetry, having HCAL resolution >~50%/√E

Complementary approaches to better calorimetry:

- High granularity
- Dual Readout (DR)

Future colliders and calorimetry

The next international collider will most likely be an e+e- collider, Higgs factory with capabilities of numerous precision measurements at the EW scale.

High resolution EM calorimetry equally important, eg

- Unexpected, even invisible, Higgs decay
- Precision W/Z-boson studies
- Electron brem. recovery
- π^0 reconstruction and jet matching

eg, brem. recovery important in electron energy resolution

Also see talk by M. Tornago

CALOR 2024

3

Future colliders and calorimetry

The next international collider will most likely be an e+e- collider, Higgs factory with capabilities of numerous precision measurements at the EW scale.

High resolution EM calorimetry equally important, eg

- Unexpected, even invisible, Higgs decay
- Precision W/Z-boson studies
- Electron brem. recovery
- π^0 reconstruction and jet matching

eg, photon matching in 6 jet event:

w/ π^0 clustering w/o π^0 clustering

Effect of an optimized EM section in traditional calorimetry

Large dispersion in E^{vis} and non-linearity for hadrons

Strong dependence on location of interactions if layers have nonuniform e/h

N. Akchurin, R. Wigmans, (2012) Nucl. Instr. and Meth. A666 (80)

Improving jet resolutions

Taking state of the art EM calorimeter energy resolution as sufficient for future physics needs, a goal is to simultaneously improve hadron performance

Two general approaches

- **Particle-flow**: use track info to measure charged jet fragments and calorimeter data mainly for the measurement of neutral particles.
 - Requires fine (transverse) granularity to separate showers
 - "Confusion term" for co-linear particles/showers important at high energy
- **Dual-readout**: use proxy for invisible E component of hadron showers
 - Effectively use an evt-by-evt proxy for EM fraction of hadronic showers
 - More moderate requirements on granularity
 - Complimentary to (also compatible with) PF methods
 - Apply to **BOTH** EM and hadronic layers to optimize resolution

Dual Readout (DR) Calorimetry

 $E = (\xi S - \hat{C})/(\xi - 1)$

Hadronic event (π^{-} here) can be seen to scatter about the fixed slope

Slope depends only on e/h values and is energy and species independent

 \hat{C} ,S measurements effectively determine f_{em} and allow a shower-byshower correction => proxy to correct for invisible energy

Nice review: RevModPhys.90.025002

Previous DREAM/RD52 results on DR Crystal Calorimeter

DREAM/RD52 previously investigated DR w/ crystals and PMTs readout using BOTH optical filters and timing to separate \hat{C} and S signals

Excellent hadron performance demonstrated, reasonable EM

Proof of principle for DR crystal calorimeter

- Ĉ/S filters, PMT readout
- Resolution O(10%/ \sqrt{E}), dominated by photon detection statistics
- Improvements needed on efficiency, λ range of light collection to increase \hat{C} signal for DR application
- Need B-field compatible readout

Rev.Mod.Phys. 90 (2018) 2, 025002

Calvision

CALVISION formed to pursue calorimetry efforts on <u>multiple fronts</u> and in collaboration with other projects, particularly IDEA/MaxiCC

Interests in:

- Crystal DR ECAL
- Fiber DR HCAL
- Full Detector studies (sim.)
- Event Reconstruction
- BlueSky R&D (materials, sensors, R/O, ...)

Multi-year efforts planned in each area.

This talk will focus on studies related to DR in a crystal ECAL

1st phase:

- Lower level R&D
- Single modules, small arrays
- Materials/technology evaluations
- Building up simulation program
- Scale up modules in next phase

See also talks on other fronts by

- Wonyong Chung: DR Calorimetry Simulation
- Renyuan Zhu: Progress of Inorganic Scintillators
- Nural Akchurin: US Perspective, High-granularity DR
- And many related topics all week!

A Segmented DRO Crystal ECAL + DRO Fiber HCAL

Enhance physics program with precision ECAL + DR hadron performance

May-2024

Crystal

Initial studies for crystal+SiPM DR ECAL

Initial bench and beam tests for xtal ECAL, focus on understanding photon collection in various materials (PWO, BGO, PbF, BSO, etc.)

Each have different advantages/challenges for performance criteria

- acquire data for tuning simulation
- guide choices for a 'phase 2' ECAL module sufficient in size to contain an electron shower
- Gain experience with FE electronics, readout and beam interfaces to run efficient beam tests

'Phase 3' is planned to develop a larger ECAL, sufficient to use with single hadrons in ECAL+HCAL resolution studies in collaboration with IDEA Performance/feasibility of concept strongly depends on:

- Adequate sampling statistics of Č light (>~50 photons/GeV)
 - Need large area sensors; good PDE, λ sensitivity
- Sufficient separation of Č from S light to avoid washing out signal
 - Wavelength, timing/pulse shape discriminators
- For state of art ECAL resolution, reasonably large S is desirable. May require some care to address saturation effects in SiPMS/readout
 - Eg small cell, fast recovery devices

Challenge of Light Detection and Separation

Detection regions for Ĉ light

n.b. Crystal transparency is poor at NUV where \hat{C} light is most intense => use longer λ 's beyond scint spectrum

Modern SiPMs are promising, but improvements in deep Red/NIR sensitive devices are very desirable

PDE comparisons

May-2024

Test beam efforts 2023/2024

Test beam 1: 120 GeV proton beam (FNAL)

- PWO/BGO, interference/absorption filters
- Concentrated on beam on long axis, MIPs + showering events
- Study light collection and S,Ĉ components, timing
- Lecroy scope 10GS/s

Test beam 2: 120 GeV proton beam (FNAL)

- PWO/BGO/PbF, absorption filters
- Concentration on angular dependence of light collection
- Aim to tune MC and identify Ĉ/S signal+variations
- Readout: 5GS/s DRS

Test beam 3: 2-4 GeV e- beam (DESY)

- PWO/BGO/BSO/PbF/scint glasses
- Material and filter scan, longer crystals
- Readout: 1-5GS/s DRS

Test beam 4: various beams (CERN)

Coming in July

Baseline bar configuration

Filter Č SiPM x4

evaluations

SiPM

Hamamatsu S14160-6050HS Large area 6x6 mm SiPMs

Broadcom AFBR-S4N66C013-ND Large area 6x6 mm SiPMs

OnSEMI MICROFJ-60035-TSV-TR Large area 6x6 mm SiPMs

Test Beams

May-2024

Study PbF2 crystals to test modeling of Cerenkov light collection

- Geant4 model normalized to response @ 90°
- Tune reflection model for surface conditions
- Good O(<20%) modeling precision of Ĉ photon statistics – shape structure determined by Cherenkov cone, Z matching, internal reflection, surface reflections, ...

PbWO4 signals, 120 GeV protons

MCP

~Good signal-to-

(improved for test

beam3)

noise for MiPs

Ž

25mmx25mmx60mm crystal

Collect MIP and showering events

May-2024

PWO CH0 N1R6 Centerpulse 40950

Filtered PWO. MIP

near SiPM

25mmx25mmx60mm crystal Threshold on pulse integral, amplitude walk correction MCP MIP Timing resolution ~200 - 400 ps / single channel • Upstream channels - no filter, mostly scintillation rear Worse resolution on channels w/ Cherenkov particle selection filter fror Amplitude 16 mV Filtered Amplitude 45 mV Filtered Amplitude 87 mV Filtered σ(T_{chan}) (ns) 0.6 Channel 0 Channel 0 Channel 0 0.55 Channel 1 Channel 1 Channel 1 Channel 2 Channel 2 Channel 2 Channel 3 Channel 3 Channel 3 0.45 Channel 4 Channel 4 Channel 4 Channel 5 Channel 5 Channel 5 0.4 Channel 6 Channel 6 Channel 6 0.6 0.35 rear 0.3 0.25 front 0.2 Martin, C Martin, C Martin, C 0.15 10 10 Threshold mV*ns Threshold mV*ns Thresh (mV·ns)

MIP Timing Resolution – Filtered PWO

660 nm interference filter on rear SiPMs

May-2024

MIP Timing Resolution – Filtered PWO

Two "peak" structure correlated with track location wrt SiPM (absent in unfiltered data)

• Visible on filtered channels, correlated with track location wrt SiPM

Hypothesized as a combined effect of interference filter and Cerenkov directionality

MIP Timing Resolution – Unfiltered PWO

No "double peak" structure in unfiltered data
Simple combination of channels yields improved timing resolution

May-2024

Analysis of 120 GeV Protons on BGO

May-2024

BGO Modeling

Modeling of scintillation and Cherenkov photon collection for BGO crystal

- Simulation only tuned for average amplitude over the scan
- Data/simulation agreement to 10% level

Center of crystal

May-2024

Measure of light collection in channel 5 vs beam position

x - x_c (mm)

CALOR 2024

x - x_c (mm)

>°

0.6

Data/MC

Data/MC

£ 202 ± 1 0

0.2

0.4

Signal analysis (BGO)

Modeling of signal shapes using data + photon tracing in Geant4

Single photon response (SPR) SiPM + Amplifier Scint signal, integrating over photon production/arrival times

Ĉ signal, integrating over photon prod./arrival times

SPR from (de)convolution of average measured signal w/o filter + BGO decay time.

Light production models \otimes propagation \otimes electronics response function Used as templates for fitting pulse components

May-2024

S/Ĉ Signal Analysis in Data (BGO)

Accounting for 1PE amplitude ~0.6mV yields Order of <20>PE/MIP Example of a single showering event

- Signal ~50 MIPs
- Order of a few GeV E loss
- Very encouraging S/N and component separation

Fits to <u>average</u> MIP signal using two components

Conclusions

Analysis of first test beam data is in progress

- Preliminary analysis suggests the presence of a significant detected \hat{C} signal component in filtered data from hadrons (protons) on BGO => our main requirement for implementing DR
- Good progress in modeling details of light collection
 - Angular dependence of S/C collection
 - Dependence of light collection on track location
- Preliminary MIP timing performance in 200-400 ps range / single channel
 - Interesting features to study in up/downstream differences, filter effects
 - Future results will examine up/down stream timing correlations

Much work/analysis in progress:

- Continue S/C separation in PWO, BGO, BSO, heavy glasses, filter optimizations
- Optimal use of combined SiPM signals for timing, S/C separation
- Select candidate crystal(s) for matrix test sufficient to contain EM showers
- Primary goals: validate EM resolution and application of DR in combined tests with **IDEA HCAL**

Supported via:

More slides

EM calorimetry

Showers relatively^{*} uniform. Excellent energy resolution has been realized in numerous EM calorimeters over the past few decades.

Image source: PWO w/ electron

Homogeneous EM Calorimeters

Technology (Experiment)	Depth	Energy resolution	Date
$Bi_4Ge_3O_{12}$ (BGO) (L3)	$22X_0$	$2\%/\sqrt{E}\oplus 0.7\%$	1993
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E}\oplus 0.45\%$	1996
CsI(Tl) (BaBar)	$16 - 18X_0$	$2.3\%/ E^{1/4} \oplus 1.4\%$	1999
$PbWO_4 (PWO) (CMS)$	$25X_0$	$3\%/\sqrt{E}\oplus 0.5\%\oplus 0.2/E$	1997
Liquid Kr (NA48)	$27X_0$	$3.2\%/\sqrt{E} \oplus \ 0.42\% \oplus 0.09/E$	1998

2022 Review of Particle Physics

Achieved resolutions in the range:

Homogeneous: $\sim fow \frac{96}{5} \operatorname{cart}(E)$

~ few %/sqrt(E)

VS

Sampling:

~10-15%/sqrt(E)

Hadron Calorimetry is Challenging

Much more challenging to precisely measure E deposition by hadrons

Showers include a pure EM component with large E dependence and fluctuations => different response,e/h>1, degrades resolution

May-2024

CALVISION

R&D consortium dedicated to detector R&D future colliders, emphasis on detector to meet physics requirements for next lepton collider.

- Precise measurements of the Higgs boson properties, and
 - W and Z bosons physics as critical tests of Standard Model
 - and their use in exploration of new physics beyond the SM
- Develop complimentary technologies to typical PFA approaches
- Explore (moderately) high granularity calorimetry with:
 - Intrinsic dual readout capabilities
 - State of art EM resolution (homogeneous crystal)
 - Hadron performance comparable to fiber-based DR
- Bluesky R&D on materials, sensors, readout, techniques
- Collaborate in international efforts on best detector solutions

SCEPCAL++

A Segmented DRO Crystal ECAL + DRO Fiber HCAL

Concept highlights advantages for physics program with precision ECAL

May-2024

Segmented ECAL

Two layers w/ high density (short X_0 , small R_M)

- Fast signal, reasonable Ĉ/S ratio, cost effective
- PbWO₄, BGO and BSO are good candidates

Crystal	Density g/cm²	X ₀ cm	λ _ι cm	R _M cm	Relative Yield	Decay time ns	Refractive index
$PbWO_4$	8.3	0.89	20.9	2.00	1.0	10	2.20
BGO	7.1	1.12	22.7	2.23	70	300	2.15
BSO	6.8	1.15	23.4	2.33	14	100	2.15
Csl	4.5	1.86	39.3	3.57	550	1220	1.94

Longitudinal profiles

Separation of photons w/ 3° opening angle

SCEPCAL++

Segmented ECAL

Two segmentation layers

- Front segment (~6 X₀, ~50 mm)
- Rear segment (~16 X₀, ~140 mm)
- Longitudinal segmentation useful for the separation of electrons and pions (can also be included in $e/\gamma/\pi^{\pm}$, separation methods)

SCEPCal

SCEPCAL++

SCEPCal +DRO HCAL performance studies

Similar sampling term as that of a pure DRO HCAL

• DR in EM + hadron sections

Slightly larger constant term:

- intrinsic limitation in system combining segments with different e/h ratios
- material budget from the ECAL services and the solenoid

Electron E resolution

Electron energy resolution maintained at level of best crystal calorimeters

May-2024

June 2023 Test Beam @Fermilab Datasets

