Stereo crystal ECAL design and simulation studies

Lianyou Shan, Han Wang, Chaochen Yuan, Huaqiao Zhang, Xiao Zhao (IHEP, Beijing)

Requirement of a CEPC PFA calorimeter

- CEPC Physics requirements
- Precision measurements with Higgs and Z/W
- Jet energy resolution (dEjet/Ejet- 3~4\%)
- PFA based Calorimeter (CEPC)
- Good Shower separation
- Small Moliere radius (Dense detector)
- High lateral granularity (~Moliere radius)
- Good Energy resolution
- Critical in some special process
- Sophisticate algorithm
- Multi-million channels(energy and timing)
- Multi-Dimensional information

Available options for CEPC ECal

- Silicon tungsten ECal

- Scintillator sampling ECal
- Dual readout calorimeter
- Homogenous Crystal ECal: long bar, Stereo

Sc ECal

Long bar Crystal ECal

Stereo Crystal ECal: Try to get 3D shower with 2D readout

tereo rystal Electromagnetic Calorimeter: Basic idea

- Traditional Crystal Ecal (CMS/BES...):

- Crystal long bar pointing to interaction point (IP)
- Slight twist to avoid escape of particles

- Stereo Crystal ECal:

Cylindrical coordinate

- Crystal long bar not pointing to IP
- Angle between Crystal long bar and det. radius is α
- -90 <= $\alpha<=90$ degrees
- $\alpha=0$; pointing to Z axis \rightarrow traditional
- α != 0 : obtain sampling on R
- Number of sampling can be optimized
- Single-end readout on the outer surface w.r.t. IP

Sampling 3 Sampling 4

- Form circular structure with trapezoid crystal

Stereo Crystal Electromagnetic Calorimeter: Design

- To improve the 3D position resolution
- Pointing angle of even layers alone Z: α
- Pointing angle of odd layers alone Z: $\alpha^{\prime}=-\alpha$

Traditional Crystal Ecal

Analytical optimization of SCECal geometry

- 3 degree of freedom for a given inner and outer radius of barrel
- Pointing angle: $\alpha=\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$
- Correlated with the crystal length: L_{R}
- Number of sampling along R: $N_{R}=[0,1,2,3 \ldots]$

- Correlate with the crystal size(typically $\sim 1 \mathrm{~cm}$) along $\phi: L_{\phi}$
- Crystal size along Z: L_{Z} (typically 1 cm)

Only one freedom left, α or longitudinal sampling N_{R}

One trapezoid shape

Form stereo structure

Form a super layer of 30 cm thick along Z

Readout at outer surface

Super layer form the full barrel

Design of Endcap SCECal

- Shelf like structure
- Each Super layer consistent of 30 layers of crystals
- Crystal pointing angle w.r.t. Z axis (beam)
- One variant of crystal shape: Parallelagon
- Even layers: α; Odd layers: $-\alpha$
- Readout electronics at outer Z w.r.t. IP

SCECal simulation using BGO crystal

- Simulation and reconstruction done using CEPCSW
- Ideal Geometry implemented
- Crystals(BGO) without wrapper/gap etc. (ideal situation)
- Simulation readout using carloStep info (no digitization)
- Threshold of readout energy is applied
- Energy, position resolution and separation of photon/pion:
- Different R segmentations tested: 5/10/14 layers
- 10 layers turn out to be the best
- Different recontruction method:
- Simplified reconstruction
- End-to-End Machine learning
- The following study based on 10 layers segmentation on R
- $r_{1}=1.9 \mathrm{~m}, \mathrm{r}_{2}=2.2 \mathrm{~m}, \mathrm{Z}=6.7 \mathrm{~m}$; endcap not included yet. 26.7 X0 BGO
- Crystal size: $L_{\phi}=[8.8-8.9] \mathrm{mm} ; L_{Z}=10 \mathrm{~mm} ; L_{R}=316 \mathrm{~mm}$
- Pointing angle: $\alpha=20^{\circ}$

Simplified Reco method for isolated particle

- Find a 2D Cluster, energy is the sum of crystals about 2 MeV
- Hit (red points): The cross point of two nearby cluster crystal
- Geometric center of hit define its z, phi, R
- Assign hit energy as sum of the two crossed crystals
- Renormalize the total energy to the Energy of 2D cluster
- Cluster Phi/Z/R: energy weighted phi/Z/R of all hits

3D hits projection

Performance of Energy and 3D positioning resolution

- Particle gun used: check resolutions as function of γ energy
- For 5 GeV y, phi: $0 \sim 360^{\circ}$, theta: 90°
- Z resolution $\sim 0.84 \mathrm{~mm}$; Phi resolution $\sim 1.9 \mathrm{~mm}$
- R resolution ~ 7.6 mm ; Energy resolution 0.35\%

Good energy resolution © Gain resolution along R © Good Z/phi resolution

Boson mass resolution in $\mathrm{H} \rightarrow \mathrm{yy}$

- Sample: ZH->2neutrinos + yy at 240 GeV
- Energy, position reconstruction and separation using simplified reconstruction method described above
- Crystal energy threshold: $2 \mathrm{MeV} / 50 \mathrm{MeV}$

Good BMR, more realistic simulation will give more reliable results

Event display for shower seperation

Two 5 GeV photon, 66 mm distance

Two 5 GeV photon, 165 mm distance

5 GeV photon and 10 GeV pi-, 195 mm

Simplified Reco method for 2 particle separation

- Cluster splitting

- For each layer (along Z): Find two locations with maximum energy deposition and separate them by the min. value between them
- Merge clusters in individual layers use layer matching alg.
- Criteria on delta phi according to its point angle direction

Separation between two 5 GeV photons

- Two 5 GeV photons, vary distance along phi between them
- Success reconstruction: 2 neutral particles, $3.3 \mathrm{GeV}<\mathrm{E} \gamma<6.6 \mathrm{GeV}$ for each photon
gamma/gamma separation effciency

Separation between γ / π

- $5 \mathrm{GeV} \gamma / 10 \mathrm{GeV} \pi$, vary distance along phi between them
- Success reconstruction: $3.3 \mathrm{GeV}<\mathrm{E}_{\gamma}<6.6 \mathrm{GeV}$
- Different π / γ separation power: pointing angle / magnetic field
separation effciency

Y/y performance using CLUE algorithm

- CLUE (CLUstering of Energy): Current CMS HGCal reco. alg.

- Input parameters to determine cluster seeds, outliers and follower hits
- the cut-off distance in the calculation of local energy density (dc);
- the minimum density to promote a hit as a seed or the maximum density to demote a hit as an outlier (pc);
- the maximum distance for a hit to be linked to a nearest higher point (δ);
- the minimum distance for a local high density hit to be promoted as a seed ($\delta \mathrm{c})$.

Particle separation using ML

- End-to-End method is used
- 2 steps, one for classification, one for energy regression(max 2 obj. now)
- More complex NN is under investigation
- Regression of 2D energy hit map of individual particle
- Regression of 3D energy hit map of individual particle
- Clustering
- PID
- Jet energy

With information from tracker and helps of PFA

Calor only

H. Zhang

May, 242024

Separation between two 5 GeV photons: ML regression

- Trained with $2 y$ with energy(0-10] GeV and distances varis
- Significant improvement than simple clustering
- 100\% eff. After 20 mm distance

Di-photon efficiency
100% eff when $2 y$ distance $>20 \mathrm{~mm}$

2 y have diff. shower start
Longitudinal separation, 1->2, conversion

Prob. of 1γ reco as 2 ys (1->2)

Separation between $\mathrm{y} / \mathrm{\pi}:$ Calor only ML

- Trained with a sample of $1-10 \mathrm{GeV} \gamma, 2-20 \mathrm{GeV} \pi+$, distance @calorimeter variated around 20 mm
- Applied to separate 5 GeV photon and $10 \mathrm{GeV} \pi+$
- ~100\% efficiency when > 100 mm distance

Efficiency Vs Distance

Summary

- A new configuration of Homogenous Crystal Ecal is presented
- Long crystal bar with 2D readout at outer end of ECal
- Use stereo structure to obtain measurement on the $3^{\text {rd }}$ dimension
- Only one free parameter: easy to optimize
- Only one variant of crystal, very uniform in phi, Z, and R
- minimal dead regions, minimal ghost hits
- ...
- Working principle is demonstrated with preliminary simulation
- Good energy resolution on EM objects including H YY
- Good separation between γ / γ and γ / π with Machine learning
- 100\% eff. @ 20 mm for $\mathrm{\gamma} / \mathrm{\gamma}$ and @100mm for $\mathrm{\gamma} / \pi$
- PFA/ML jet boson mass resolution study is ongoing
- Optimization of crystal/readout
- Starting from existing CEPC crystal Ecal R\&D: BGO+SiPM
- Further optimization to consider the large signal size

Backup

Analytical formular for SCECal geometry

- 3 degree of freedom for a given inner and outer radius of barrel
- Pointing angle: $\alpha=\left[0, \frac{\pi}{2}\right]$
- Correlated with the crystal length: L_{R}
- Number of sampling along R: $N_{R}=[0,1,2,3 \ldots]$
- Correlate with the crystal size(typically $\sim 1 \mathrm{~cm}$) along $\phi: L_{\phi}$
- Crystal size along Z: L_{Z} (typically 1 cm)
- $\mathrm{L}_{R}=\sqrt{r_{2}^{2}-r_{1}^{2} * \sin (\alpha)}-r_{1} \cos (\alpha)$
- Crystal bar open angle along $\phi: \phi_{C}=\operatorname{acos} \frac{r_{2}^{2}+r_{1}^{2}-L_{R}^{2}}{2 * r_{1} * r_{2}}$
- Total number of crystals along $\phi: N_{\phi}=N_{R} * \frac{2 * \pi}{\phi_{c}}$
- Shower depth $\left(\mathrm{S}_{\mathrm{n}}\right)$ and crystal size L_{ϕ}^{n} along R at $\mathrm{n}^{\text {th }}$ sampling:
- $S_{n}=F_{n+1}-F_{n} ; F_{n}=r_{1} * \frac{\sin (\alpha)}{\sin \left(\alpha-n * \frac{\phi_{c}}{N_{R}}\right)}-1 ; L_{\phi}^{n}=S_{n} * \sin \left(\alpha-n * \frac{\phi_{c}}{N_{R}}\right)$

Configuration of 5/10/14 layers along R

- Taget: change layers along R, keep similar Z/phi segmentation
- 5 layers: $\alpha=10^{\circ}$; crystal size: [9]*10*304 mm³, $\quad \mathrm{n}=1309$ * 671 ;
- 10 layers: $\alpha=20^{\circ}$; crystal size: [8.8-8.9]* $10^{*} 316 \mathrm{~mm}^{3}, \mathrm{n}=1276$ * 671
- 14 layers: $\alpha=30^{\circ}$; crystal size: [9.1-9.4]*10*339 mm³, $\mathrm{n}=1141$ * 671
- Simulated 30 GeV photon pointing at theta $=90$, phi $=[0-360]$
- Simpler clustering algorithm with threshold of 1 MeV
- Energy/Z resolution do not change for different layers along R

E std. dev. $\sim 0.5 \% @ 30 \mathrm{GeV}$

Ghost hits

- Confusion of red hit with yellow ones
- Happens only in small phi/R range
- R-range: $0-30 \mathrm{CM}$
- Phi-range: -4.5 cm - +4.5 cm (10 layer)
- Large probability have hits in middle shower depth, small chance to have hits in small or large shower depth
- Big energy deposited in middle shower depth hit, small in inner/outer depth
- If ghost hits happens
- largest change of phi: $\sim 4.5 \mathrm{~cm}$,
- Largest change of R: $\sim 15 \mathrm{~cm}$

Ghost hit in Z^{*} phi plane: $1 \mathrm{~cm} * 9 \mathrm{~cm}$
Ghost hit in R*phi plane: $30 \mathrm{~cm} * 9 \mathrm{~cm}$

Ghost hit happens within this Parallelogram area
R^{\uparrow}

