

The MUSE Beam Line Calorimeter

Win Lin Stony Brook University Rutgers, the State University of New Jersey

CALOR 2024, 05/23/2024

The MUSE experiment is supported by the U.S. Department of Energy, the U.S. National Science Foundation, the Paul Scherrer Institute, and the US-Israel Binational Science Foundation.

Proton Radius Puzzle

Pohl et al.: 0.84184(67) fm

DOI: 10.1038/nature09250

DOI: 10.1126/science.1230016

CODATA: 0.8751(61) fm DOI: 10.5281/zenodo.22826

Proton Radius Puzzle - Recent Results

DOI: 10.1051/epjconf/202023401001

Proton Radius Puzzle - Recent Results

Inconsistencies in recent measurements and analyses \rightarrow more work to be done, proton radius is still a puzzle!

The MUon proton Scattering Experiment (MUSE)

- Located at the Paul Scherrer Institut in Villigen, Switzerland
- PiM1 beamline: secondary beam with e+/-, μ +/- and π +/- at 3.3 MHz beam flux
- Simultaneously measure high precision ep and µp elastic scattering

The MUon proton Scattering Experiment (MUSE)

- Located at the Paul Scherrer Institut in Villigen, Switzerland
- PiM1 beamline: secondary beam with $e^{+/-}$, $\mu^{+/-}$ and $\pi^{+/-}$ at 3.3 MHz beam flux
- Simultaneously measure high precision ep and µp elastic scattering

MUSE Setup

Quantity	Coverage			
Beam momenta	115, 160, 210 MeV/c			
Scattering angle	20 - 100 degrees			
Q ² range for e	0.0016 - 0.0820 (GeV/c²)²			
Q ² range for µ	0.0016 - 0.0799 (GeV/c²)²			

BH RF at 160 MeV/c

MUSE Calorimeter

Purpose: Radiative Correction

MUSE integrates over a range of outgoing momenta and scattering angles, including the radiative tail.

Need to suppress high energy radiation to limit radiative correction and reduce experimental uncertainty

Differential Cross Section at a MUSE Kinematic Setting

Purpose: Radiative Correction

MUSE integrates over a range of outgoing momenta and scattering angles, including the radiative tail.

Need to suppress high energy radiation to limit radiative correction and reduce experimental uncertainty

Simulation of Photon Events

Radiative Correction for ep Scattering at a MUSE Kinematic Setting

10

MUSE Calorimeter

- MUSE calorimeter reads out both timing (TDC) and energy (QDC) information
- Match gain using cosmic; calibrate energy using beam

Schematic of readout

TDC for improving cluster finding

QDC for energy reconstruction

MUSE Calorimeter

- Energy sum is calculated by highest energy deposited bar + 8 surrounding neighbors

Demonstration of energy sum, star is crystal with highest energy deposited

~ 4 cm

10000

- * Radiation length: 1.265 cm
- * Molière radius: 2.578 cm

DOI: 10.1093/ptep/ptac097

Calorimeter RF time at p_{beam} = 160 MeV/c (Before Walk Correction)

RF Period = 19.75 ns **Detector timing resolution** is sufficient for identifying random coincidence beam particles

Detector Response

Light output vs. Average Incident Particle Energy

Detector Response

Light output vs. Average Incident Particle Energy

Resolution vs. Average Incident Particle Energy

Good energy response with reasonable resolution

Simulation and Digitization

- Experiment is simulated using Geant4.
- Calorimeter simulation: record Cherenkov light production in the crystals. Two modes of modeling readout:
 - Fast mode: integrates a light yield over the path in the crystal
 - Detailed mode: counts optical photons that reach the PMTs

Electron QDC of a Central Crystal

Simulation and Digitization

- Tune parameters until data and simulation matches for each bar
- Then look at overall detector response using same analysis.

Electron QDC of a Central Crystal

Good agreement between data and simulation, and satisfy requirement (agree within 2 MeV)

Electron QDC of a Central Crystal

Simulation and Digitization

- Tune parameters until data and simulation matches for each bar
- Then look at overall detector response using same analysis

<u>Reconstructed Photon of Scattering Events</u>

- Data and simulation show similar result
- Cut will effectively remove events with large E_{γ}
- **Result is preliminary**
 - more tuning in simulation will be done to

better model the detector behavior

more analysis studies will be done to

improve cluster finding

Projected uncertainty on Radiative Corrections

Table 1 Radiative corrections δ for MUSE. Values are given for ep and μp scattering at various kinematic settings and for fully integrated final-state bremsstrahlung photons (full data) and after suppression of

photons in the beam direction with the calorimeter ($E_{\gamma} < 0.4 p_0 c$). The statistical uncertainties in the corrections are of the order 10^{-3}

$p_0 (\text{MeV}/c)$ θ	115 25°	115 60°	115 95°	161 25°	161 60°	161 95°	210 25°	210 60°	210 95°
ep									
$p'_{e,\min}$ (MeV/c)	14.8	13.0	14.4	14.8	13.0	14.4	14.8	13.0	14.4
δ_e (full data)	0.091	0.119	0.119	0.130	0.173	0.172	0.173	0.239	0.235
$\delta_e \left(E_\gamma < 0.4 p_0 c \right)$	0.026	0.042	0.049	0.028	0.049	0.060	0.030	0.056	0.070
μp									
$p'_{\mu,\min}$ (MeV/c)	84.2	82.4	85.8	84.2	82.4	85.8	84.2	82.4	85.8
δ_{μ} (full data)	0.001	0.005	0.003	0.004	0.009	0.008	0.006	0.010	0.010
$\delta_{\mu} \left(E_{\gamma} < 0.4 p_0 c \right)$	0.001	0.005	0.003	0.004	0.009	0.008	0.006	0.010	0.010

Table 2 Uncertainties of radiative corrections σ_{δ} for *ep* scattering values ass in MUSE, including the various contributions from the experimental calorimete uncertainties in the model input parameters p_0 , θ_e , p'_{\min} , and E_{γ} . The in ESEPP

$p_0 (\text{MeV}/c)$ θ	115 25°	115 60°	115 95°	161 25°	161 60°	161 95°	210 25°	210 60°	210 95°
$ (\partial \delta_e / \partial p_0) \sigma_{p_0} $	0.01 %	0.01%	0.00%	0.01 %	0.00%	0.00%	0.00%	0.03 %	0.01%
$ (\partial \delta_e / \partial \theta_e) \sigma_{\theta_e} $	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
$ (\partial \delta_e / \partial p'_{\min}) \sigma_{p'_{\min}} $	0.05%	0.18%	0.30%	0.03 %	0.16%	0.31%	0.02%	0.13%	0.31%
$ (\partial \delta_e / \partial E_{\gamma}) \sigma_{E_{\gamma}} $	0.32%	0.33%	0.33 %	0.25 %	0.26%	0.26%	0.20%	0.22%	0.22%
σ_{δ_e}	0.32%	0.38%	0.45 %	0.25 %	0.30%	0.40%	0.20%	0.26%	0.38%

DOI: 10.1140/epja/ s10050-023-01215-0

Radiative corrections and uncertainty reduced by a factor of ~2.5 to 5.5 after calorimeter cut

values assume a cut on hard photons with $E_{\gamma} > 0.4 p_0 c$ in the MUSE calorimeter. The total uncertainty does not include model uncertainties in ESERP.

Uncertainty in radiative corrections is 0.33 - 0.22% after calorimeter cut

Conclusion

- MUSE is measuring ep and µp elastic scattering cross section to resolve the proton radius puzzle
- The MUSE calorimeter will reduce uncertainty in radiative corrections by vetoing high energy forward going photons
 - The detector has reasonable detector response
 - Preliminary detector simulation shows promising result matching data
 - Work ongoing for improving cluster finding and multiple beam particle event separation
- MUSE paper on Radiative Corrections: L. Li et al. Instrumental uncertainties in radiative corrections for the MUSE experiment. Eur. Phys. J. A 60 8 (2024). DOI: 10.1140/epja/s10050-023-01215-0
- MUSE first calorimeter paper will be published soon: W. Lin et al. The MUSE Beamline Calorimeter

19