Full Simulation of a Segmented Crystal ECAL in IDEA

Wonyong Chung, Chris Tully CalVision collaboration May 2024 – CALOR

Segmented Crystal EM Precision Calorimeter (SCEPCal)

New perspectives on segmented crystal calorimeters for future colliders JINST 15 (2020) P11005 [2008.00338]

Particle Flow with a Hybrid Segmented Crystal and Fiber Dual-Readout Calorimeter JINST 17 (2022) P06008 [2202.01474]

> Basic idea covered in several talks References above remain sound "proto-PFA" studies done in pure Geant4

This talk:

Implementation in dd4hep from scratch

Development environment

Detector description

Reconstruction strategies and effective use of neural nets

40

Marco Lucchini

60

80

100

120

 $\langle \mathsf{E}_{\mathsf{iet}} \rangle [\mathsf{GeV}]$

140

0.02L

Implementing a new detector from scratch in FCC-SW

• What you need:

- dd4hep (detector description):
 - Compact XML description
 - Geometry constructor
 - Material definitions
 - Segmentation class, factory, handle
 - Technically optional, but needed if implementing a geometry not already in dd4hep (e.g. projective)

ddsim:

٠

•

- Sensitive Detector (assuming a new type e.g. DR w/ S&C)
 - Class definition, wrapper
 - Custom SD Hit, Action classes
- Reco extension structs metadata attached to geometry
 - Optional, useful for event displays
- Accepts more variety of hep inputs, no reco chain (yet)
- Gaudi + k4 (FWCore, Geant4Sim, Gen):
 - Geant4 Actions (Event/Stepping), Initializations
 - Rough integration with hep inputs, better reco chain
- Steering (config) files
- Remaining: digitization, wrapping for instrumentation, cooling, etc.
- Special thanks to Sanghyun Ko and dual-readout repository

Development environment

New detector development necessitates local visualization

- Remote options exist (XForwarding, mount /cvmfs, JSROOT)
- High-granularity geometries, >100ms latency becomes painful

Recommendation: AlmaLinux9 + key4hep-spack

- Previously used: Debian, Fedora, nixOS
- Some local path mods needed in key4hep-spack
- Some deep dependencies (e.g. Cython) do not compile on arm64 so no macOS
- Forces you to learn software stack always good

Takeaway:

• Sometimes it's just hard to know in advance

key4hep and spack have matured in 2023

• But someone still had to add the hashes manually

Valentin Volkl

n Volkl Thomas Madlener

Juan Miguel Carceller

Detector description

- Fully parametrized construction
- Only 7 parameters needed:
 - Inner radius
 - Z extent of barrel
 - Crystal face width (nominal)
 - Front crystal length
 - Rear crystal length
 - Timing crystal thickness (nominal)
 - Number of phi segments
 - Ensures hermeticity
 - Enables timing layer
 - Takes care of projective gaps
- Geometry optimizations
 - Intermediate envelope volumes, <1000 volumes each
 - Orange slices (barrel)
 - Rings (endcap)
 - ~10x speed/memory improvement vs. monolithic single container

Simulation validation

- Runs FCC-ee events and outputs Calo hits
- Baseline w/o instrumentation, wrapping, cooling, etc.
 - Add these in parallel with reco perf tests, understand/isolate systematics
- Plots wzp6_ee_ZZ_test_ecm240 (10 events)
- No optical physics, simply count & terminate S/C
 - GPU efforts an active area (Celeritas, AdePT, CaTS)
- PbWO4 + LYSO timing layer
- With 1x1cm crystal faces/thickness:
 - ~1.12 million barrel crystals
 - ~400,000 endcap crystals
 - ~**30,000** timing crystals

Reconstruction strategy

GravNet [1902.07987] (GNN, 2019, distance-weighted, HGCAL) MLPF [2101.08578] (GNN, 2021, jets/pileup, CMS, comparable to PFA) ParticleNet [2309.13231] (GNN, 2019, jet tagging unordered particle clouds, CEPC) Particle Transformer [2202.03772] (Transformers, 2022, kinematics + pairwise interactions, JetClass 100M open data set) ... and many more

- Trend towards unordered particle clouds
 - Clustering becomes an inner detail of overall reconstruction
- Join the fray?
 - Could start throwing calo hits at the latest NNs...
 - Ongoing work to converge into full detector sim (tracker + ECAL + HCAL)
- Meanwhile, need to understand the different neural networks
 - Unfortunate reality of AI/ML: physics follows computer science
 - Different types of NNs were originally built, optimized, tuned for a specific task
 - Image recognition (CNNs)
 - Image generation (GANs, Diffusion)
 - Etc.
- Study how to reframe the physics question into these contexts as much as possible
 - Understand and integrate the strengths of rule-based PFAs into NNs

Pick the right neural network for the detector

- Tile-based sampling calorimeters:
 - Diffusion models inherently designed to reconstruct from noise
 - ControlNet/Inpainting can use **tracks as a guide**

- Reconstructing from noise potential to integrate systematics into NNs
- Multi-segmented/homogeneous calorimeters:
 - Transformers designed to maintain long range context in sequential data, i.e. NLP
 - Use tracks for attention, segmentation and timing provide sequence

- GNNs are generally short range and generally use distance, arguably same kind of assumptions as rule-based PFA
- Mixed/"Semi-Homogeneous":
 - Generative Adversarial Networks Diffusion model in sampling portion, transformer/GNN in homogeneous, directly leverage the detector design

StableDiffusion + ControlNet

Train according to the physics case

- Physics case is essential to training approach
- For an e+e- collider:
 - HHH from loop correction to the HZ cross section
 - Z(qq)H apparently dominates
 - Hinges on ability of detector to reduce ZZ background
- Foundational approach? orders of magnitude more data, unexpected performance gains seen in LLMs (circa ~2016-17)
 - Feed all processes/jets at once instead of training on specific subsets, see what happens
- Unclear how to combine separately trained networks on a single readout chain

Probing the Higgs sector at the FCC-ee https://cds.cern.ch/record/2835483

	All classes		$H \to b \bar{b}$	$H \to c \bar{c}$	$H \rightarrow gg$	$H \to 4q$	$H \to \ell \nu q q'$	$t \rightarrow bqq'$	$t\to b\ell\nu$	$W \to qq'$	$Z o q \bar{q}$
	Accuracy	AUC	$\operatorname{Rej}_{50\%}$	$\operatorname{Rej}_{50\%}$	$\operatorname{Rej}_{50\%}$	$\operatorname{Rej}_{50\%}$	$\operatorname{Rej}_{99\%}$	$\operatorname{Rej}_{50\%}$	$\text{Rej}_{99.5\%}$	$\operatorname{Rej}_{50\%}$	$\text{Rej}_{50\%}$
PFN	0.772	0.9714	2924	841	75	198	265	797	721	189	159
P-CNN	0.809	0.9789	4890	1276	88	474	947	2907	2304	241	204
ParticleNet	0.844	0.9849	7634	2475	104	954	3339	10526	11173	347	283
ParT	0.861	0.9877	10638	4149	123	1864	5479	32787	15873	543	402
ParT (plain)	0.849	0.9859	9569	2911	112	1185	3868	17699	12987	384	311

Baselines, new technologies, new benchmarks

- Fully parametrized, hot-swappable sub-detector designs in new frameworks
 - Fast iteration and optimization possible
- Top-down view of detector geometry and data readout
 - "Triggerless" DAQ, flexible online software (see LHCb)
 - Next-gen ASICs *should* be fast enough to run real-time inference on frontend electronics
- Opportunity for unprecedented vertical integration
- Current designs are arguably the 'final forms' of CMS, ATLAS, etc.
 - We need more new technologies
 - Lattice-oriented crystals
 - Chromatic calorimetry
 - Quantum sensors for HEP [2311.01930]
- Growing understanding of NN maths as relevant to physics
 - "A mathematical perspective on Transformers" [2312.10794]

We develop a mathematical framework for analyzing Transformers <u>based on their interpretation as</u> <u>interacting particle systems</u>, which reveals that clusters emerge in long time.

<u>Thank you for your attention!</u>

Constraints and limitations for FCC detectors

Physics process	Rate (kHz)
Z decays $\gamma \gamma \rightarrow \text{hadrons}$ Phabba	100 30 50
Beam background	20
Total	~ 200

Subdetector	Physics	Background/noise
CLD Vertex Detector	$150 \mathrm{~MB/s}$	6 GB/s
CLD Tracker	160 MB/s	10 GB/s
IDEA Drift Chamber	60 GB/s	2 GB/s
IDEA Si Wrapper	32 MB/s	0.5 GB/s
IDEA DR Calorimeter	10 GB/s	1.6 TB/s *
IDEA pre-shower	320 MB/s	820 MB/s
IDEA Muon Detector	4 MB/s	67 MB/s

* Assuming no suppression for isolated counts