Highly Segmented Neutrino Detector SuperFGD for the T2K Experiment

Alejandro Ramírez Delgado

20th International Conference on Calorimetry in Particle Physics

> May 23 2024 Tsukuba, Ibaraki, Japan

Content

- **2** T2K's Near Detector Upgrade
- SuperFGD Design
- SuperFGD Assembly
- **SuperFGD First Results**

Tokai to Kamioka

- Long baseline neutrino oscillations and neutrino interactions experiment.
- It measures neutrino cross sections and • un-oscillated flux in the **Near** detector.
- It uses its **Near** and **Far** detectors to measure the • oscillated flux and extract oscillation parameters:
 - δ_{CP} , θ_{13} through ν_{e} appearance.
 - Δm^{2}_{32} , θ_{23} through ν_{μ} disappearance.

Excerpt of T2K Achievements (So Far)

$\nu_{\mu} \rightarrow \nu_{\mu}$ Disappearance

- θ_{23} - Δm^2_{32} constraint.
- Consistent with both octants.

K. Abe et al. (T2K), Eur. Phys. J. C 83, 782 (2023)

$\nu_{\mu} \rightarrow \nu_{e}$ Appearance

- θ_{13} -constraint.
- Consistent with stronger reactor constraint!

Phys. Rev. Lett. 112, 061802 (2014)

δ CP constraint

- $\{0, \pi\}$ excluded at 90%.
- Best fit close to maximal CP violation!

Nature 580, 339-344 (2020)

Alejandro Ramírez Delgado

CALOR 2024

Original Near Detector Complex

Components

- Neutrino monitor on-axis (INGRID).
- UA1 magnet (0.2 T)
- Outer calorimeters.
- "Basket" with off-axis sub-detectors.
 - π^{0} detector (P0D¹)
 - Fine-Grained Detectors (FGDs²)
 - Time Projection Chambers (TPCs³)
 - Inner calorimeters.

Magnet

Calorimeters

Limitations

- High momentum threshold (specially for protons, > 400 MeV/c).
- Limited angle acceptance (< 50°).
- Limited neutron detection capabilities (important for anti-neutrinos).
- Poor efficiency for Ev_e < 1 GeV (limited statistics for a good flux constraint).

Neutrino candidate in FGD1

 Alejandro Ramírez Delgado

ND280 Upgrade

Expected Capabilities

- Lower momentum threshold (> 300 MeV/c for protons).
- 4π angular acceptance.
- Event-by-event neutron reconstruction.
- e/γ separation (including $Ev_e < 1$ GeV).
- Increased tracker mass (x2).
- Improved µ/e PID.

Pp efficiency (current vs upgrade)

Alejandro Ramírez Delgado

CALOR 2024

Proposed Modifications

Downstream ECAL

- P0D removal
- Replace with 3 new sub-detectors

New Sub-detectors

Super fine-grained detector (SuperFGD)

- Same mass and material (plastic scintillator) as previous FGDs (doubling total target mass!).
- 3D tracking and full solid angle coverage.

• 2 High-angle TPCs (HATPC)

- Low (high) momentum threshold (resolution).
- Ideal for e/µ PID.

• Time of Flight panels

- Reconstruct direction of particles produced in SuperFGD and FGD.
- Complementary polar angle not covered by HATPCs.

Alejandro Ramírez Delgado

CALOR 2024

May 23 2024

SuperFGD Prototype Detectors

- One prototype was tested with charged particles at CERN, and neutrons at LANL.
- Performance test using the same photosensors and similar electronics as the final SuperFGD.
- Light yield of ~50 pe/MIP, cross talk at ~3% and ~1 ns channel resolution.
 NIMA 936 (2018), JINST 15, 12 (2020)
- Total neutron cross section extracted! Physics Letters B, 840 0370-2693 (2023)

Time resolution vs Light yield

Alejandro Ramírez Delgado

May 23 2024

SuperFGD Potential Physics Results

Electron/Gamma Separation

- Due to its low energy acceptance and high granularity, SuperFGD can identify the "ionization pattern" near the interaction vertex, from the low momentum positron.
- This can separate e⁺/e⁻ events from γ decay, from pure e⁻ events from v+e⁻ →v+e⁻
- This technique will be very important to constrain neutrino flux uncertainties.

Probe of Nuclear Effects

- High angle and low momentum acceptance, allow the measurement of "transverse kinematic variables", crucial to measure nuclear effects like "Final State Interactions" or "Nucleon Correlations".
- Very important to reduce systematic uncertainties in the Ev measurement, and therefore in oscillation parameters

Electron-gamma separation

"Double momentum imbalance" SIMULATION on FGDs and SuperFGD, showing their ability to separate neutrino interactions on Hydrogen and Carbon

May 23 2024

SuperFGD Potential Physics Results

IC Sample

Data Sample

20

Z position relative to peak [cm]

data

10 15 20 25

Alejandro Ramírez Delgado

Due to its particle containment, particle ID is possible through dE/dx, using SuperFGD only!

20

CALOR 2024

Z position [cm]

500

0

30

20

10

Z-layer 12

May 23 2024

Planes/Box Assembly

Planes & Box Preassembled

Alejandro Ramírez Delgado

CALOR 2024

May 23 2024

Cubes Installation (On-Site)

Pennsylvania SuperFGD ASSEMBLY

Box preparation and installation of first plane

40 out of 56 planes stacked and aligned

Stacking and alignment of planes

Alejandro Ramírez Delgado

May 23 2024

Optical Interface / Calibration System

Light Injection Side

Electronics

Analog Signal Processing

 Coaxial cables send the (photoelectron) signals from MPPCs to the frontend boards (FEBs) for discrimination, and for amplitude and timing digitization.

Digital Signal Processing

- Each crate has an "OCB" board that concentrates the synchronized digital data from all 14 FEBs in a crate.
- It forms SuperFGD events which are sent to the DAQ PC.

"Clock" Signals

 Master Clock Board (MCB) propagates clock, gate and trigger beam signals to OCB and FEBs.

Alejandro Ramírez Delgado

On-surface Commissioning

Hardware in general tested on the surface

- Electronics tested extensively all the way to data taking.
- Monitoring of ~700 sensors through Slow Control software.
- Direct Memory Access (DMA) implemented in the OCB FW for fast data transmission, reaching bandwidths of ~30 MB/s.
- SuperFGD DAQ and Slow Control fully integrated in the "ND280" global systems.

Bandwidth reached several MB/s during data taking.

Cooling system for the electronics, tested through Slow Control software.

CALOR 2024

First SuperFGD Beam Data

Installed on October 2023

Alejandro Ramírez Delgado

CALOR 2024

Operation With Other Sub-Detectors

SuperFGD

December 2023

- First simultaneous operation with the • other new sub-detectors.
- Neutrino interactions seen in • SuperFGD and High Angle TPC
- Full integration ongoing.

XY plane

vµ Beam

Bottom HATPC

CALOR 2024

SuperFGD Performance

Preliminary Results

ADC counts in FEBs as a response

to photons from light injection system

5 SuperFGD FIRST RESULTS

*HG: Readout path for the low energy dynamic range (up to ~200 p.e.)

*LG: Readout path for higher energy activity, like stopping protons.

Alejandro Ramírez Delgado

CALOR 2024

High Gain (HG) and Low Gain (LG)

SuperFGD In the Pit!

All new sub-detectors installed

Alejandro Ramírez Delgado

CALOR 2024

May 23 2024

1. The T2K collaboration envisioned an ambitious plan to upgrade its Near detector to reduce the key uncertainties in the measurement of oscillation parameters.

2. It designed, built and successfully commissioned 3 new sub-detectors, which are now installed in the "Off-axis" Near detector of its neutrino baseline.

3. The new tracker sub-detector "SuperFGD" involves a novel technique, its ~2 million cubes allow a full solid angle coverage, enabling the study of high-angle and low momentum particles, of great importance for understanding nuclear effects!

4. Besides doubling the mass of the target, it allows for the exploration of physics until now inaccessible to T2K's near detector, like electron/gamma identification at low energies.

5. With the installation just complete, and calibration and performance studies ongoing, SuperFGD has already started collecting the data of certainly very interesting results to come.

THANKS!

BACKUP

Neutrino Beam & Flux

- 30 GeV protons hit graphite target, producing charged hadrons.
- Hadrons ultimately decay into neutrinos. •
- Neutrino flux is v_{μ} -dominated. •
- ND280-SK baseline is Off-axis. .
- Narrow E v spectrum.

10

Electronics

CITIROC Circuit – Gain Calibration

Amplitude from time-over-threshold

Fluxes and Interaction Channels

QE+2p2h Dominance For T2K

Alejandro Ramírez Delgado

CALOR 2024

May 23 2024

27

В

BACKUP

ωµ

Example of Readout Channel

Primary and Secondary Beamlines

- Limited low momentum acceptance.
 - Particles need enough momentum to reach the TPC where they are reconstructed.
 - Low energy particles can't make short tracks or be detected at all.
- Limited high-angle acceptance (> 50°).
 - Due to 2-D tracking (lack of granularity in the transverse direction).
- Limited neutron detection capabilities.
 - Reduced tracker granularity and lack of time of flight.

$$N_{\nu_{\alpha}}^{ND}(E_{\nu}) = \Phi_{\nu_{\alpha}}^{ND}(E_{\nu}) \times \epsilon^{ND}(E_{\nu}) \times \sigma_{\nu_{\alpha}}^{ND}(E_{\nu}) \times \sigma_{\nu_{\alpha}}^{ND}(E_{\nu}) \times \epsilon^{FD}(E_{\nu}) \times \epsilon^{FD}(E_{\nu}) \times \sigma_{\nu_{\beta}}^{FD}(E_{\nu}) \times P_{\nu_{\alpha} \to \nu_{\beta}}(E_{\nu})$$

 To improve constraints in oscillation parameters, a significant reduction of some of the uncertainties involved, is needed!

SuperFGD Expected Tracking Efficiency

BACKUP

- FGD
 - 2D tracking
 - Pp threshold ~400 MeV/c.
 - Maximum efficiency ~30%.
- SuperFGD
 - Both 2D and 3D tracking expected to perform better than FGDs.
 - Pp threshold ~300 MeV/c.
 - Efficiency ~60 to ~80%

CALOR 2024