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Digital Hadron Calorimetry
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Hadronic sampling calorimeter 
Designed for future electron-positron colliders (ILC or CEPC)

~60%/√E 
Best JET 
resolution with 
traditional 
calorimetry

Need 30%/√E

For LC   Separate W,Z boson masses on event-by-event basis

Future accelerator experiments pose stringent requirements on their detectors 

Combining RPC and MPGD concepts -> RPWELL: 
Single-sided Thick GEM electrode coupled to the 
readout anode through high bulk resistivity

Compact 

Total volume of 100 m3 (CEPC TDR)  
Highly granular -> by using segmented sampling elements:  

• Scintillator tiles – AHCAL  
• Gaseous detectors – (s)DHCAL  

-> Available technologies: RPC & MPGDs

RPWELL advantages: 
- Operation in environment-friendly gases (Ar) 
- Industrially produced 
- Robustness 
- Simple assembly procedure 
- Closed geometry

THGEM on the RP


50x50 cm2



Borysova M.,  WIS,  CALOR 2024

Digital Hadron Calorimetry:  Reconstruction with PFA
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Within the ILC community, The Particle Flow Approach  is considered the most 
promising strategy for achieving the ILC jet energy resolution goal  

PFA calorimetry requires: 
• The reconstruction of the 4-momentum of all visible particles in an event.  
• The momenta of charged particles are measured in the tracking detectors, while 

the energy measurements for photons and neutral hadrons are obtained from 
the calorimeters.

• PFA CEPC

Drawbacks 
• Requires significant processing power. 
• Tuning PF algorithms for optimal performance is time-consuming and requires expertise. 
• Detector imperfections can impact PF accuracy. 
• Struggles with high-energy showers and highly dense particle environments. 
• While PF techniques are increasingly used, they might not be readily available for all calorimeter 

systems.

M. A. Thomson . Particle Flow Calorimetry and the PandoraPFA Algorithm
Nucl.Instrum.Meth.A611:25-40,2009
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Machine Learning Approach
 Graph Neural Networks (GNNs) have emerged as a powerful tool for problems involving complex 
relationships between data points.  

GNNs offer several advantages when combined with Deep Sets or Graph Attention Networks (GAT) for shower 
reconstruction, where particle interactions create intricate shower patterns. 

Shower data can be noisy due to detector limitations or background effects. GNNs can potentially learn to identify and 
down-weight the influence of noisy data. 

GNNs can be applied 

 to the data from complex detector geometries. 

 to sparse data with variable input sizes. 

 to non-Euclidean data (unlike convolutional neural networks).  

 to an end-to-end training framework, where the model learns both feature extraction and shower 
reconstruction simultaneously.
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Detector module in G4
Epoxy
 ArCO2

pc
b

Cathode
RP

TH
G

EM

Electrode


50 layers RPWELL-based DHCAL in Geant4

𝝅- 25 GeV

A response of sampling calorimeter to hadrons is much more complicated than to 
electrons: 
• electromagnetic (mostly from π0 particles and nuclear photons)  
• hadronic (“invisible” component (neutrons, nuclear binding energy losses, etc.) 

The fractional containment of the mentioned components fluctuates significantly 
from event to event

Digitization Assuming: 

• uniform response  
• 98% MIP detection efficiency  
• 1.1 average pad multiplicity 
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Resistive Plate WELL detector

G4  v.10.7, QGSP_BERT_EMZ 
10M 𝝅- showers 
1 to 60GeV 
0<𝛉<40°, 0<𝛗360°

[*] The simulation was validated 
against data in a compact module

[*] D. Shaked-Renous et al.,  Test-beam and simulation studies 
towards RPWELL-based DHCAL  JINST 17. (2020) P12008.
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 DeepSet Architecture
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⇒ Data structure: 

Point Clouds (PCs) of 
x, y, z position of hits 

⇒ embedding function transforms the 

raw data point into a lower-dimensional 
vector representation, capturing its 
essential features.

The Deep Set architecture is a powerful 
approach for dealing with sets of data points, 
particularly when the order of data points 
within the set is irrelevant.

MLP (Multi-Layer Perceptron)

⇒ The core concept of Deep Sets lies in aggregating information from all 

the element embeddings within the set. This aggregation aims to 
capture a global representation of the entire set, regardless of the order 
in which the elements were presented
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Data sets
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Pions Protons Neutrons Kaons

Calorimeter response with the multiplicity of 1:

Prediction with DeepSet:

• training 
set ~1e6 
showers 
for 4 
different 
particle 
types; 
validation 
set of 
150k 
showers, 
test set- 
160k 
events for 
each type
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Energy resolution predictions with DeepSet

The energy resolution measured for pions (red line) outperforms rule-based algorithms for 
the RPWELL-based WIS DHCAL [*] (black line) and RPC-based CALICE DHCAL [**] (green 
line)
[*] D. Shaked-Renous et al.,  Test-beam and simulation studies towards RPWELL-based DHCAL  JINST 17. (2020) P12008. 
[**] CALICE Collaboration, Analysis of Testbeam Data of the Highly Granular RPC-Steel CALICE Digital 
Hadron Calorimeter and Validation of Geant4 Monte Carlo Model, NIM A 939. (2019) 89–105
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Offline software 
Compensation



Borysova M.,  WIS,  CALOR 2024

Predictions for  pions with different  pad sizes and efficiencies

Enlarging the pads by a factor of four (s×cm2) and reducing the number of channels by four does not degrade the 
performance significantly.  
Provided that the two shower separations would not degrade as well, these may offer a more cost-effective solution for 

future experiments. 
The results are consistent above 30 GeV for all studied  MIP detection efficiencies but degrade significantly at lower 

energies at 90%  MIP detection efficiency.
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WIS WIS

1x1cm2

2x2cm2

3x3cm2
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Predictions for  pions with different shower angles

 Good prediction ability for the polar angle uniformly distributed in the range of 0 - 20° ;  
 adding angles > 20°  degrades the performance 
 Ongoing training on 10e6 data set for the polar angle range of 0 - 40°.
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The structure of the baseline CEPC detector design

preliminary 
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GAT for classification

Graph attention transformers (GAT)  -  novel convolution-style NN that operate on graph-structured data, leveraging masked self-
attentional layers.  

Unlike Deep Sets for point clouds, this approach leverages edges in addition to nodes. This allows the Graph Attention Network 
(GAT) layers to exploit the inherent structural information within the shower data 

We employ a masked attention mechanism. This restricts information sharing between nodes to only geometrically close 
neighbors. This focus on local interactions is particularly beneficial for understanding the shower's shape. 

While current results are promising, exploring a model variant with unrestricted attention (all nodes communicate) is a 
potential future direction.

Network Architecture for  GAT model.
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knn==6

The k-nearest neighbor graph (k-
NNG) is a graph in which two vertices 
p and q are connected by an edge, if 
the distance between p and q is 
among the k-th smallest distances 
from p to other objects from P. 

Particle class
{neutron: 0, pion-: 1, proton: 2, K0L: 3}
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Classification
True
 k0L

True
p

True
pi-

True
n

k0L 97.91% 0.00% 0.64% 2.23%

p 0.00% 97.86% 1.76% 0.50%

pi- 0.25% 1.57% 79.22% 8.37%

n 1.84% 0.54% 16.02% 89.12%

• Protons and kaons are never misidentified 

• The best performance is for k0L&p & the worst performance is 
for pi-

the training set ~4e6 showers with 4 different particle types 
and validation set of 600k showers, each type - 150k events; 
for all with multiplicity = 1

“The production of π0’s in kaon showers is therefore limited by a mechanism 
very similar to that in proton showers, and the results may be expected to be 
similar as well” N. Akchurin et al.NIM. in Phys. Res. A 408 (1998) 380—396

Class ={neutron: 0, pion-: 1, proton: 2, K0L: 3}

Confusion matrix

Efficiency and fake rate

Efficiency (also known as precision or recall) represents the 
proportion of predicted Class A that are actually Class A. 
Fake rate represents the proportion of actual negatives (not Class A) 
that are incorrectly classified as Class A

12

Pions only with tracks
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Outlook

The energy resolution measured for pions in DHCAL outperforms rule-based algorithms. 

Enlarging the pads by a factor of four (s×cm2) and reducing the number of channels by four 
does not degrade the performance significantly; 

The results are consistent above 30 GeV for all studied MIP detection efficiencies but degrade 
significantly at 90%  MIP detection efficiency at lower energies; 

Good prediction ability for the polar angle uniformly distributed in the range of 0 - 20°; 

Shower discrimination performs very well for protons and kaons and requires additional studies 
for pions and neutrons. 

Deep learning techniques are emerging as a promising approach to improve hadronic shower and 
jet energy reconstruction. They are, therefore, an important step towards optimizing DHCAL 
performance in terms of single hadron and jet energy resolution, two-particle separation,  etc.

13



Thank you!
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Back up
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5.3. Consequences
The origin of the observed differences between proton and pion showers strongly suggests 
that the measurable effects are not limited to these particles. In particular, we expect to see 
significant differences between kaon and pion showers as well. Just as the baryon 
number is conserved in proton showers, the strangeness quantum number is 
conserved in the strong interactions that take place in kaon-induced showers. The 
strange (anti-)quark contained in the incident particle is likely to be transferred to a highly 
energetic particle in each generation of the shower development.

The production of π0’s in kaon showers is therefore limited by a mechanism very similar 
to that in proton showers, and the results may be expected to be similar as well: a smaller 
response, a better resolution, a wider shower profile, and a more symmetric line shape than for 
pion-induced showers.

16

N. Akchurin et al./Nucl. Instr. and Meth. in Phys. Res. A 408 (1998) 380—396

on differences observed in the calorimetric signals 
generated by protons and pions of the same energies  
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G4 sample for shower discrimination  studies
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Pions

Protons

NeutronsKaons
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850:90 - 8 Net Layers GAT8L vs 2M:160k  DS 10L
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GNN GAT8:       1.1             98%              50.3+/-1.8       4.0+/-1.6 
GNN DS10L:      1.1             98%              47.8+/-0.009     7.8+/-0.003

**CALICE collaboration, 
Analysis of Testbeam Data 
of the Highly Granular 
RPC-Steel CALICE Digital 
Hadron Calorimeter and 
Validation of Geant4 
Monte Carlo Models, Nucl. 
Instrum. Meth. A 939 
(2019) 89 
[arXiv:1901.08818].
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Resistive Plate WELL Detector
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 Test-beam and simulation studies towards RPWELL-based DHCAL 
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