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Digital Hadron Calorimetry

@Hadronic sampling calorimeter
Combining RPC and MPGD concepts -> RPWELL:

Single-sided Thick GEM electrode coupled to the
readout anode through high bulk resistivity

@ Designed for future electron-positron colliders (ILC or CEPC)

Future accelerator experiments pose stringent requirements on their detectors

For LC Separate W,Z boson masses on event-by-event basis

Readout strips/pads

RPWELL advantages:
- Operation in environment-friendly gases (Ar)

- Industrially produced

Need 30%/VE

MIP
Drift cathode —- wf——\ .
~60%/VE % 120/ 28 = 0300, Ar/7%CO,
Best JET
resolution with Cu~
: VRPWELL
traditional WELL electrode {M—’
[ c,immEsEEE.s- - calorimetry L
. e eEm:BESEEa s - . - i Resistive plate /'l - Readout
Q N R R RS ] LR . — .
g B -, MM ‘ Epoxy/Graphite mixture / electronics

) - Robustness
®Compact - Simple assembly procedure
@Total volume of 100 m3 (CEPC TDR) - Closed geometry
@Highly granular -> by using segmented sampling elements:

- Scintillator tiles - AHCAL

« Gaseous detectors - (s) DHCAL

-> Available technologies: RPC & MPGDs THGEM 02 the RP
o0x50 cm



Digital Hadron Calorimetry: Reconstruction with PFA

Charged ;'
Hadrons

- With PandoraPFA and ILD simulation obtain:

l

'Electron

Eser |cos0|<0.7 oe/ B
45 GeV 25.2 % 3.7 %
100 GeV 29.2 % 2.9 %
180 GeV 40.3 % 3.0 %
250 GeV 49.3 % 3.1 %

M. A. Thomson . Particle Flow Calorimetry and the PandoraPFA Algorithm

Nucl.Instrum.Meth.A611:25-40,2009

Within the ILC community, The Particle Flow Approach is considered the most
promising strategy for achieving the ILC jet energy resolution goal

PFA calorimetry requires:
« The reconstruction of the 4-momentum of all visible particles in an event.
- The momenta of charged particles are measured in the tracking detectors, while
the energy measurements for photons and neutral hadrons are obtained from

AN the calorimeters.
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Drawbacks V&

- Requires significant processing power.

- Tuning PF algorithms for optimal performance is time-consuming and requires expertise.

- Detector imperfections can impact PF accuracy.

» Struggles with high-energy showers and highly dense particle environments.

- While PF techniques are increasingly used, they might not be readily available for all calorimeter
systems. 3 oo, WIS, CALOR 2025



Machine Learning Approach

Graph Neural Networks (GNNs) have emerged as a powerful tool for problems involving complex
relationships between data points.

GNNs offer several advantages when combined with Deep Sets or Graph Attention Networks (GAT) for shower
reconstruction, where particle interactions create intricate shower patterns.

Shower data can be noisy due to detector limitations or background effects. GNNs can potentially learn to identify and
down-weight the influence of noisy data.

GNNs can be applied

@ to the data from complex detector geometries.

to sparse data with variable input sizes.
to non-Euclidean data (unlike convolutional neural networks).

@ to an end-to-end training framework, where the model learns both feature extraction and shower
reconstruction simultaneously.

fBorysova ‘M., WIS, CALOR 2024
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A response of sampling calorimeter to hadrons is much more complicated than to
electrons:

- electromagnetic (mostly from 1O particles and nuclear photons)

 hadronic (“invisible” component (neutrons, nuclear binding energy losses, etc.)

The fractional containment of the mentioned components fluctuates significantly
from event to event

Digitization Assuming:
ol | ; * uniform response

[*] The simulation was validated

j ,, * 98% MIP detection efficiency
against data in a compact module 0 ;x

1.1 average pad multiplicity

[*] D. Shaked-Renous et al., Test-beam and simulation studies 201
towards RPWELL-based DHCAL JINST 17. (2020) P12008. ; 5
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0 20 40 60 80 100

Detector module in G4

Cathode

Electrode

Resistive Plate WELL detector

G4 v.10.7, QGSP_BERT EMZ
10M 7- showers

1to 60GeV
0<0<40°, 0<¢360°




The Deep Set architecture is a powerful
approach for dealing with sets of data points,

particularly when the order of data points @
within the set is irrelevant. @ _
. )
= Data structure: @ O
Point Clouds (PCs) of Active cells

X, Y, Z position of hits

= embedding function transforms the

raw data point into a lower-dimensional
vector representation, capturing its
essential features.

-
=

MLP (Multi-Layer Perceptron)

MLP

>

>

MLP

DeepSet Architecture

-
=

Pooling
> ( )

= The core concept of Deep Sets lies in aggregating information from all

the element embeddings within the set. This aggregation aims to
capture a global representation of the entire set, regardless of the order

in which the elements were presented

Cat

MLP

x10

Energy

CBor_ysova ‘M., WIS, CALOR 2024



Data sets

Protons Neutrons
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Energy resolution predictions with DeepSet
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@The energy resolution measured for pions (red line) outperforms rule-based algorithms for - -
. __Simulation A ]
the RPWELL-based WIS DHCAL [*] (black line) and RPC-based CALICE DHCAL [**] (green = o
line) oot TLMPseestoncieerey 4
[*] D. Shaked-Renous et al., Test-beam and simulation studies towards RPWELL-based DHCAL JINST 17. (2020) P12008.
[**] CALICE Collaboration, Analysis of Testbeam Data of the Highly Granular RPC-Steel CALICE Digital EBeam [GQV]

Hadron Calorimeter and Validation of Geant4 Monte Carlo Model, NIM A 939. (2019) 89-105
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Predictions for pions with different pad sizes and efficiencies
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@Enlarging the pads by a factor of four (sxcm?2) and reducing the number of channels by four does not degrade the
performance significantly.

@Provided that the two shower separations would not degrade as well, these may offer a more cost-effective solution for
future experiments.

@The results are consistent above 30 GeV for all studied MIP detection efficiencies but degrade significantly at lower
energies at 90% MIP detection efficiency.
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Predictions for pions with different shower angles

- 0.6 E E
e = —+— 0-40 deg, 10M-2.5M events
LL
e g —a— (-30 deg, 3M-750k events
O e e —— 0-20 deg, 3M-750k events
il P | | —— (0-10 deg, 3M-750k events
— ol o S S S —— theta = 0, 1M-250k events -
L— 3380mm ; |
—— HCal | |
— ECal
L—.* 1810mm
— TPC
== 329mm
f Yoke/Muon 1 HCal | QDO  LumiCal P Vertex
6983mm 4143mm  2350mm |
The structure of the baseline CEPC detector design
0.0 5 5
0 10 20 30 40 50
Epeam, GeV

@ Good prediction ability for the polar angle uniformly distributed in the range of O - 20°;
@ adding angles > 20° degrades the performance
@ Ongoing training on 10e6 data set for the polar angle range of O - 40°.

10
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GAT for classification

Masked attention
Based on edges

H Pooling MLP
i —> GAT layers —> > @ ) » O
Particle class

{neutron: 0, pion-: 1, proton: 2, KOL: 3}

—
v'o —
—

90

The k-nearest neighbor graph (k-
NNG) is a graph in which two vertices
p and g are connected by an edge, if

the distance between p and g is -
among the k-th smallest distances ACtIVG Cel IS
from p to other objects from P.

Network Architecture for GAT model.

@ Graph attention transformers (GAT) - novel convolution-style NN that operate on graph-structured data, leveraging masked self-
attentional layers.

@Unlike Deep Sets for point clouds, this approach leverages edges in addition to nodes. This allows the Graph Attention Network
(GAT) layers to exploit the inherent structural information within the shower data

@We employ a masked attention mechanism. This restricts information sharing between nodes to only geometrically close
neighbors. This focus on local interactions is particularly beneficial for understanding the shower's shape.

@While current results are promising, exploring a model variant with unrestricted attention (all nodes communicate) is a
potential future direction.

i

CBor_ysova ‘M., WIS, CALOR 2024



@the training set ~4e6 showers with 4 different particle types
and validation set of 600k showers, each type - 150k events;
for all with multiplicity =1

Efficiency (also known as precision or recall) represents the
proportion of predicted Class A that are actually Class A.

Fake rate represents the proportion of actual negatives (not Class A)
that are incorrectly classified as Class A

1.0 -

0.8 A

o
o

Efficiency

o
S
1

0.2 1

0.0

Efficiency and fake rate

[ class 0
[ class 1
[ class 2
[ class 3

Fake rate

30
Etarget

0.30 ~

0.25 A

0.20 ~

o
[
(5

0.10 4

0.05 ~

0.00

True

Classification

Confusion matrix

[ class 0
[ class 1
[ class 2
(1 class 3

50 60

12

True True True True
kOL P pI- n
kKOL 0.00% | 0.64% | 2.23%
g P 0.00% 1.76% | 0.50%
pi- 0.25% | 1.57% 8.37%
n 1.84% | 0.54% [16.02%

- 0.0

1 2 3
Predicted
Class ={neutron: 0, pion-: 1, proton: 2, KOL: 3}

Protons and kaons are never misidentified

“The production of m0’s in kaon showers is therefore limited by a mechanism
very similar to that in proton showers, and the results may be expected to be
similar as well” N. Akchurin et al.NIM. in Phys. Res. A 408 (1998) 380—396

- The best performance is for kOL&p & the worst performance is

for pi-

>8] Pions only with tracks

0.6 1

Efficienc

0.4

0.2

0.0 L
fBor_ysova ‘M., WIS, CALOR 2024



Outlook

@The energy resolution measured for pions in DHCAL outperforms rule-based algorithms.

@Enlarging the pads by a factor of four (sxcm2) and reducing the number of channels by four
does not degrade the performance significantly;

@The results are consistent above 30 GeV for all studied MIP detection efficiencies but degrade
significantly at 90% MIP detection efficiency at lower energies;

@ Good prediction ability for the polar angle uniformly distributed in the range of O - 20°;

@ Shower discrimination performs very well for protons and kaons and requires additional studies
for pions and neutrons.

@Deep learning technigues are emerging as a promising approach to improve hadronic shower and
jet energy reconstruction. They are, therefore, an important step towards optimizing DHCAL
performance in terms of single hadron and jet energy resolution, two-particle separation, etc.

13
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16

on differences observed in the calorimetric signals
generated by protons and pions of the same energies

N. Akchurin et al./Nucl. Instr. and Meth. in Phys. Res. A 408 (1998) 380—396

5.3. Consequences

The origin of the observed differences between proton and pion showers strongly suggests
that the measurable effects are not limited to these particles. In particular, we expect to see
significant differences between kaon and pion showers as well. Just as the baryon
number is conserved in proton showers, the strangeness quantum number is
conserved In the strong interactions that take place in kaon-induced showers. The
strange (anti-)quark contained in the incident particle is likely to be transferred to a highly
energetic particle in each generation of the shower development.

The production of 0’s in kaon showers is therefore limited by a mechanism very similar
to that in proton showers, and the results may be expected to be similar as well: a smaller
response, a better resolution, a wider shower profile, and a more symmetric line shape than for
pion-induced showers.

%orysova ‘M., WIS, 2024



G4 sample for shower discrimination studies
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0.3 - g - 98% 30k test
— I 987 160k test CLLI; 0.3 __ Fit: 50.7%/sqrt(Ebeam) + 3.4%
B Fit: 47.8%/sqrt(Ebeam) + 7.8% =z B power-law fit: 50.8%/sqrt(Ebeam) + 10.3%
— power-law fit: 50.8%/sqgrt(Ebeam) + 10.3% — Calice Fe-DHCAL: 51.5%/sqrt(Ebeam) + 10.6%
0.25— 0.25—
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Table 6: A summary of the energy resolution of different MIP detection efficiency and average pad-multiplicity values.
The energy reconstruction is based on the power-law parametrization. For comparison, the last row includes the results
of the CALICE RPC Fe-DHCAL, which includes offline software compensation [20].
Average Pad-Multiplicity MIP-Detection Efficiency S [% GeV] C [%]
1.1 98%* 50.8 + (0.2, -0.3) 10.3 £0.06
1.1 95%* 51.1 +(0.3,-0.2) 10.3 +£0.04
1.1 90%* 50.8 +£0.2 10.6 = 0.07
1.1 70%* 51.240.2 11.4 +0.05 analysi of Toatbaam Data
1.6 98%* 48.4+0.3 12.2+0.1 o Stac] OALIGE Desita
CALICE Ha(.JIrorT Calorimeter and
0 Validati f Geant4
Fe.DHCAL [20]+* ¢ 9% 515+ 15 10.6 £ 0.5 Monte Garlo Modsls, Nucl,
- : - : - Instrum. Meth. A 939
* Uniform detection efficiency  ** Using software compensation (2019) 89
[arXiv:1901.08818].
GNN GATS: 1.1 98% 50.3+/-1.8 4.0+/-1.6
GNN DS10L: 1.1 98% 47.8+/-0.009 7.8+/-0.003
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Resistive Plate WELL Detector

» Single-sided Thick GEM electrode coupled to the hi
readout anode through high bulk resistivity Drift cathode — pr——

«  Combining RPC and MPGD concepts A/ T4CO,

* |onization induced primary electrons =
» Drift along the field lines into the THGEM holes ~ WELLelectrode =

» Undergo charge avalanche multiplication

VDrift

of v ' e VRpWELL

Resistive plate P Readout

» Signals induced on a segmented anode by the epoxy/Graphite mixture / = electronics
movement of charges Readout strips/pads
» Stable operation at the gain up to a few 10° and rate  Potential advantages:
up to 100kHz/cm? - Operation in environment friendly gases (Ar)
- Industrially produced
- Robustness
Refs: - Simple assembly procedure
A Rubin et al 2013 JINST 8 P11004
. Moleri et al 2017 JINST 12 P10017 - Closed geometry
. Moleri et al 2016 JINST 11 PO9013

Nttps://doi.org/10.1016/].nima.2016.06.009
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Test-beam and simulation studies towards RPWELL-based DHCAL

- Three 16x16 cm?2 resistive Micromegas

- Three 48x48 cm?2 resistive Micromegas

- Two 50x50 cm2 RPWELLs

- 2 cm thick steel absorbers

Pion Beam
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