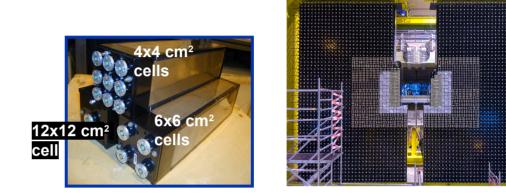
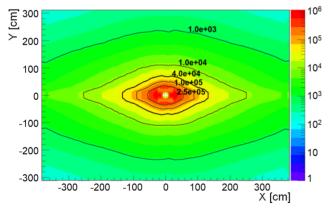
Scintillating sampling ECAL technology for the LHCb PicoCal

Philipp Roloff (CERN) on behalf of the LHCb ECAL Upgrade II R&D group

LHCb in collaboration with Crystal Clear, supported by EP R&D (WP 3.2.0 and 3.2.1)

20th International Conference on Calorimetry in Particle Physics Tsukuba, 21/05/2024

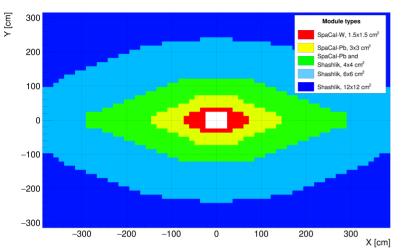

PicoCal

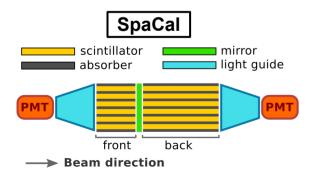

The current ECAL and motivation to upgrade

Current LHCb ECAL:

- Optimised for π^0 and γ identification in the few GeV to 100 GeV region at 2 x 10³² cm⁻²s⁻¹
- Shashlik technology with 4x4, 6x6 and 12x12 cm² cell size
- Radiation hard up to 40 kGy
- Energy resolution: $\sigma(E)/E \approx 10\%/\sqrt{E} \oplus 1\%$
- Large array of \approx 50 m² with 3312 modules and 6016 channels

Accumulated radiation dose [Gy] after 300 fb⁻¹

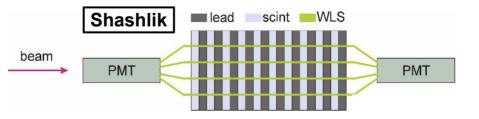



Requirements for the Upgrade II (operation at up to 1.5 x 10³⁴ cm⁻²s⁻¹ after LS4):

- Sustain radiation doses up to 1 MGy and $\leq 6 \times 10^{15}$ 1 MeV neq / cm² in the centre
- Keep current energy resolution of $\sigma(E)/E \approx 10\%/\sqrt{E} \oplus 1\%$
- Pile-up mitigation crucial
- \rightarrow Timing capabilities with O(10) ps precision, preferably directly in the calorimeter modules
- \rightarrow Increased granularity in the central region with denser absorber
- Better time resolution, less impact of radiation damage, more information for event reconstruction and particle identification from longitudinal segmentation

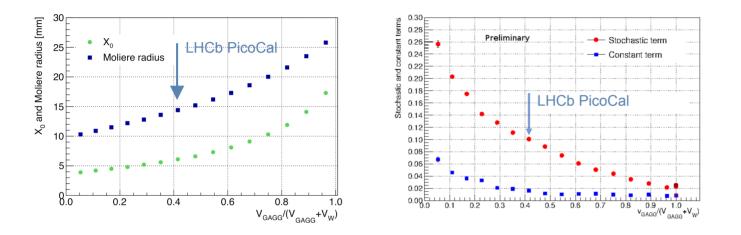
Technologies for the Upgrade II

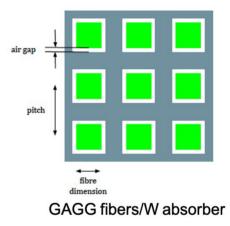
PicoCal 2024 - baseline


21/05/2024

SpaCal technology for inner region:

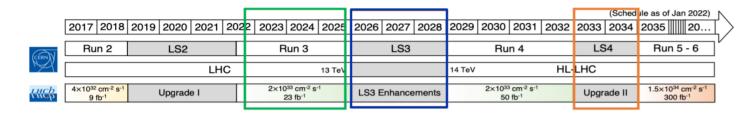
- Innermost modules with scintillating crystal fibres and W absorber
- → Development of radiation-hard scintillating crystals
- \rightarrow 1.5x1.5 cm² cell size
- Intermediate region with scintillating plastic fibres and Pb absorber
- \rightarrow Need radiation-tolerant organic scintillators
- \rightarrow 3x3 cm² and 4x4 cm² cell size


Shashlik technology:


- About 2900 Shashlik modules with improved timing capability and double-sided readout
- \rightarrow WLS fibres replaced in all modules, about 900 modules rebuilt with smaller cell size
- LS3 enhancement: W absorber for innermost modules equipped with scintillating plastic fibres for 2x2 cm² cell size, single-sided readout
 All SpaCal modules tiled by 3°+3° → see later

SpaCal: tuning of X₀, R_M and energy resolution

Example: Variation of fibre size with constant pitch in SpaCal-W/GAGG



- Similar variations also possible for polystyrene fibres or Shashlik modules!
- Very flexible technology, also relevant for Higgs factories, FCC-hh, fixed-target experiments at the intensity frontier, ...

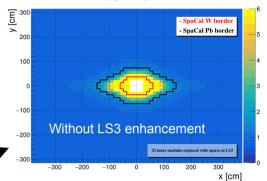
LHCb ECAL upgrade strategy

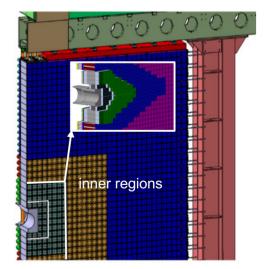
Constant term [%] after 4 years of Run4 (60/fb)

Run 3 in 2022-2025:

Run with unmodified ECAL Shashlik modules at L = $2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ (new 40 MHz readout)

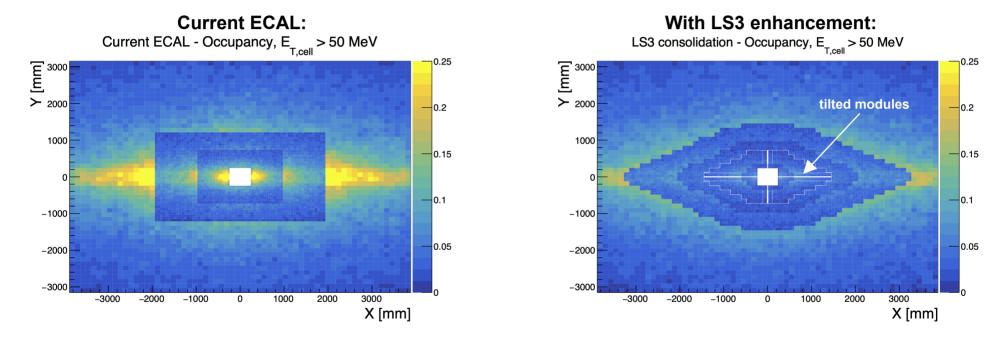
LS3 enhancement in 2026-2028:


Introduce single-section rad. tolerant SpaCal (2x2 and 3x3 cm² cells) in inner regions and rebuilt ECAL in rhombic shape to improve performance at L = 2(4) x 10^{33} cm⁻²s⁻¹ \rightarrow 32 SpaCal-W & 144 SpaCal-Pb modules with plastic fibres compliant with Upgrade II conditions \rightarrow Option to include timing information with single-sided readout to inner regions


LS4 Upgrade II in 2033/2034:

Introduce double-section radiation hard SpaCal (1.5x1.5, 3x3 and 4x4 cm² cells) and improve timing of Shashlik modules for a luminosity of up to $L = 1.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

- → Innermost SpaCal-W modules equipped with crystal fibres
- → Include timing information and double-sided readout to full ECAL for pile-up mitigation


LHCb-TDR-023, LHCb-TDR-024

LS3: impact of improved granularity

- Occupancies from detailed simulation, also including the hadronic component!
- Assumed luminosity: $L = 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

- Sizeable occupancy in large regions before LS3 enhancement (e.g. challenge for neutral pion reconstruction)
- Occupancy map after LS3 enhancement reasonably flat

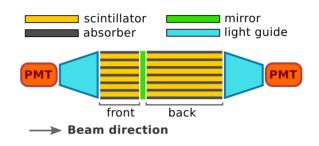
SpaCal with tungsten absorber:

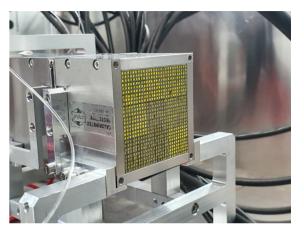
- SpaCal-W with crystal fibres for LS4
- 3D printing of absorber
- SpaCal-W with polystyrene fibres for LS3

SpaCal with lead absorber

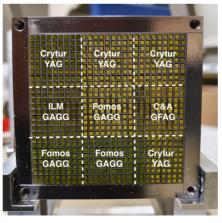
SpaCal-W: prototype with garnet crystals

SpaCal prototype module with W absorber and garnet crystal fibres:

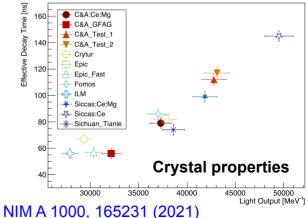

- Pure tungsten absorber with 19 g/cm³
- 9 cells of 1.5x1.5 cm² (R_M ≈ 1.45 cm)
- 4+10 cm long (7+18 X₀)
- Reflective mirror between sections


Crystal garnets from several producers:

- Crytur YAG
- Fomos GAGG
- ILM GAGG
- C&A GFAG
- \rightarrow Characterised with laboratory measurements

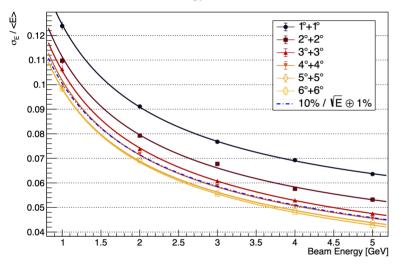

Photon detectors used:

- Hamamatsu R12421 for energy resolution
- Hamamatsu R7600U-20 metal channel dynode (MCD) PMT for timing for better time resolution



Configuration used at DESY in 2020 and 2021

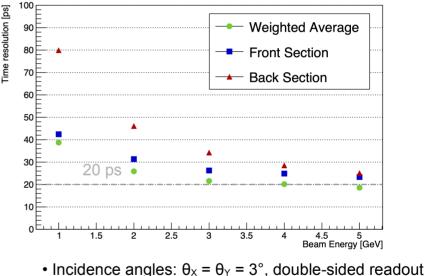
Effective Decay Time vs Light Output



21/05/2024 Scintillating sampling ECAL technology for the LHCb PicoCal

SpaCal-W with crystal fibres: test beam results

Energy resolution (DESY 2020, R12421)

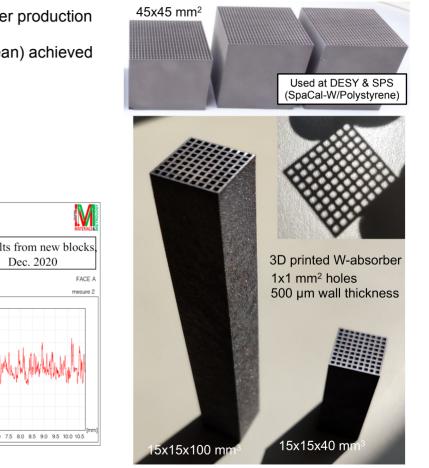

Energy Resolution

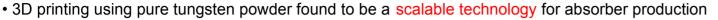
• Better energy resolution with larger incidence angles • Data up to 5 GeV give (10.2 \pm 0.1)% sampling term and 1-2% constant term for $\theta_X = \theta_Y = 3^\circ$

Time resolution (DESY 2021, R7600U-20)

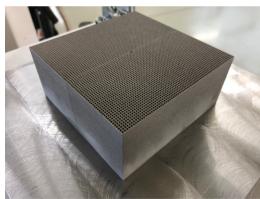
Time Resolution C&A GFAG

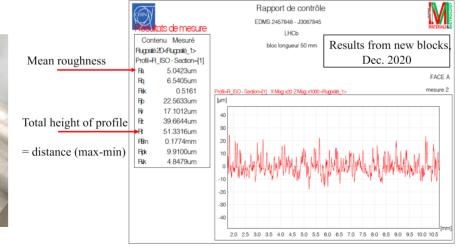
- Time stamps in front and back obtained using constant fraction discrimination (CFD)
- Time resolution at 5 GeV for GFAG: better than 20 ps

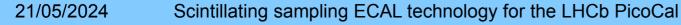

NIM A 1045, 167629 (2022)


SpaCal with tungsten absorber:

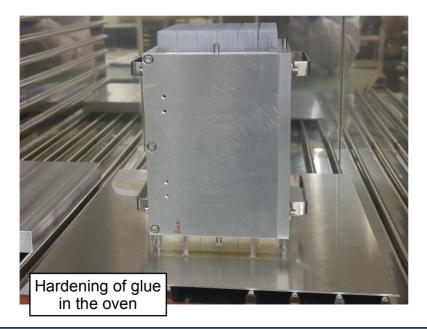
- SpaCal-W with crystal fibres for LS4
- 3D printing of absorber and "module 0"
- SpaCal-W with polystyrene fibres for LS3

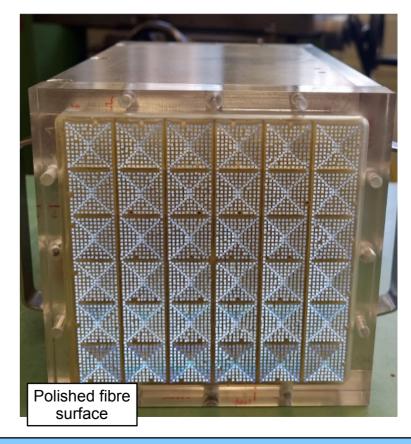

SpaCal with lead absorber


Tungsten absorber: 3D printing



- Smooth surface mandatory to avoid damaging the fibres during insertion
- \rightarrow Very good mean roughness of R_a = 5 µm (average profile height deviations from mean) achieved
- <u>R&D campaign with EOS (Germany):</u>
- \rightarrow First 1.5x1.5 cm² cells with up to 10 cm length
- \rightarrow Then 4.5x4.5 cm² pieces
- \rightarrow Recently 12.1x12.1 cm² pieces produced and used for "module 0"
- Module-size pieces recently produced by Laser Add Technology Co. in China:
- \rightarrow Two 12.1x12.1 cm² pieces in 2023
- \rightarrow Absorber pieces for module-size prototype with crystal fibres expected very soon

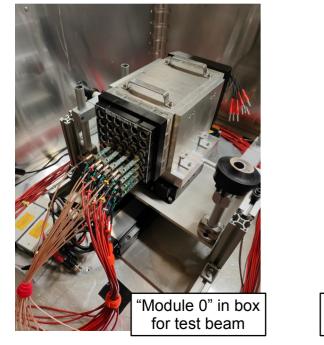


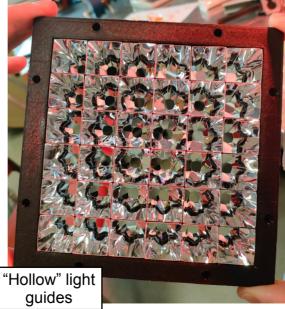


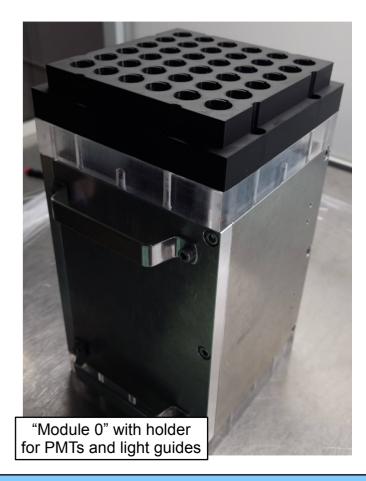
"Module 0" with tungsten absorber (1)

Full-size "module 0" with tungsten absorber assembled at CERN:

- 3D-printed tungsten absorber: 5+5+5+4 = 19 cm (LS3 configuration)
- Filled with single-cladded organic scintillating fibres (1x1 mm², Kuraray SCSF-78)
- · Gluing and polishing procedure established
- One hole per cell removed to insert fibre for calibration



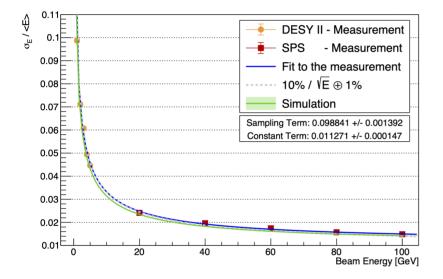

21/05/2024 Scintillating sampling ECAL technology for the LHCb PicoCal


"Module 0" with tungsten absorber (2)

Full-size "module 0" with tungsten absorber assembled at CERN:

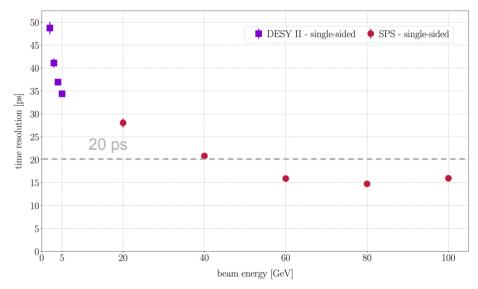
Radiation-hard "hollow" light guides imbedded in PMT holder
Extensive test beam characterisation performed at DESY (May 2023) and CERN (June & August September 2023)

21/05/2024 Scintillating sampling ECAL technology for the LHCb PicoCal


SpaCal with tungsten absorber:

- SpaCal-W with crystal fibres for LS4
- 3D printing of absorber and "module 0"
- SpaCal-W with polystyrene fibres for LS3

SpaCal with lead absorber


SpaCal-W with polystyrene fibres for LS3: test beam results

Energy resolution (DESY & SPS, R14755U-100)

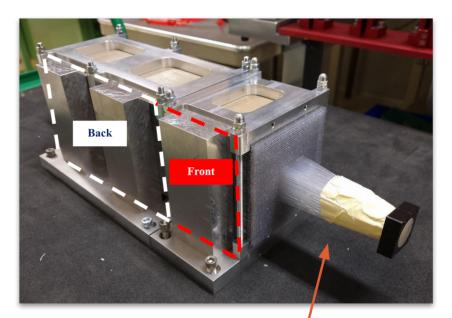
- Incidence angles: $\theta_X = \theta_Y = 3^\circ$, single-sided readout
- "Module 0" prototype
- Noise contribution subtracted
- Sampling term: 9.9%, constant term: 1.1%
- \rightarrow Very good agreement with simulation

Time resolution (DESY & SPS, R7600U-M4)

- Incidence angles: $\theta_X = \theta_Y = 3^\circ$, single-sided readout
- Prototype with 2x2 cells
- Optical coupling with "hollow" light guide
- Multi-anode PMT with 4 channels
- Time resolution above 40 GeV: better than 20 ps

SpaCal with tungsten absorber:

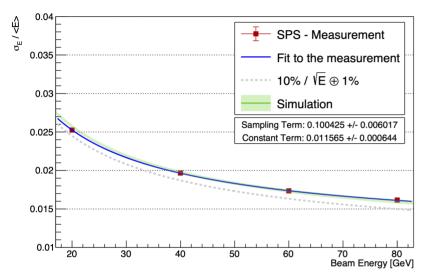
- SpaCal-W with crystal fibres for LS4
- 3D printing of absorber and "module 0"
- SpaCal-W with polystyrene fibres for LS3


SpaCal with lead absorber

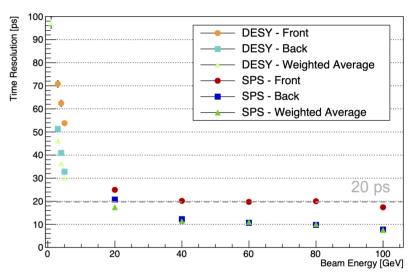
SpaCal-Pb: first prototype with polystyrene fibres

- Lead absorber with polystyrene fibres (1 mm, SCSF-78M)
- 9 cells of 3x3 cm² (R_M ≈ 3 cm)
- 8+21 cm long (7+18 X₀)
- Reflective mirror between sections
- Results from DESY & CERN SPS

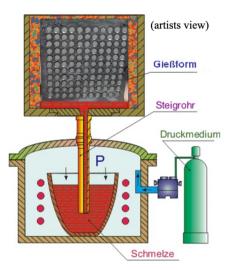
Different readout configurations compared:


- Direct contact of MCD PMT with the scintillating fibres
- PMMA light guides
- Bundle of fibres coupled directly to MCD PMT

Fibres bundle (1 cell)

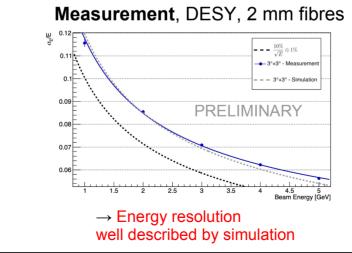

SpaCal-Pb with polystyrene fibres: test beam results

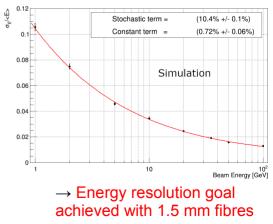
Energy resolution (CERN SPS)


- Incidence angles: $\theta_X = \theta_Y = 3^\circ$
- Noise contribution subtracted
- Sampling term: 10.0%, constant term: 1.16%
- \rightarrow Very good agreement with simulation

Time resolution (DESY & SPS, R11187)

- Incidence angles: $\theta_X = \theta_Y = 3^\circ$, double-sided readout
- PMT in direct contact
- Front section more important at low energy, back section at high energy
- Time resolution above 20 GeV: better then 20 ps


SpaCal-Pb: towards module-size prototypes


 Lead absorber produced using low-pressure casting process by MTH & ICM in Germany

• First prototype with 9x9 cm² active area equipped with round SCSF-78 scintillating fibres of 2 mm diameter tested at DESY in December 2023

• Next prototype with 12x12 cm² active area and using SCSF-3HF scintillating fibres of 1.5 mm diameter in preparation, targeting test beam in summer 2024 at the CERN SPS

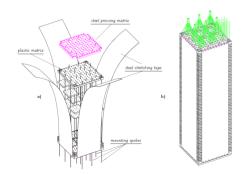
Simulation, 1.5 mm fibres

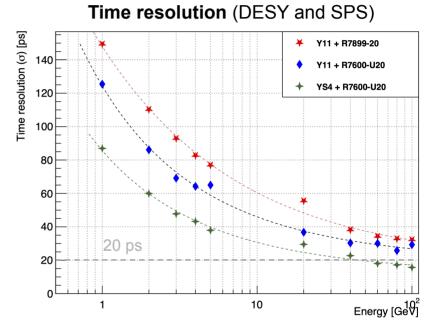
21/05/2024

Scintillating sampling ECAL technology for the LHCb PicoCal

SpaCal with tungsten absorber:

- SpaCal-W with crystal fibres for LS4
- 3D printing of absorber and "module 0"
- SpaCal-W with polystyrene fibres for LS3


SpaCal with lead absorber


Shashlik: R&D towards LS4

• Current LHCb Shashlik modules have good time properties, further improvement by replacing WLS fibres by faster ones:

- Y11 (7 ns decay time) \rightarrow current LHCb
- YS2 (3 ns decay time)
- YS4 (1.1 ns decay time)

• Measurements at DESY and SPS with current (R7899-20) and faster (R7600-20) PMT, single-sided readout, $\theta_X = \theta_Y = 3^\circ$

• Better than 20 ps achieved above 40 GeV (even slightly better with double-sided readout)

Summary and conclusions

21/05/2024 Scintillating sampling ECAL technology for the LHCb PicoCal

Summary and conclusions

- The innermost 176 modules of the LHCb ECAL need to be replaced during LS3 due to radiation damage
- → SpaCal technology with tungsten and lead absorber meets all requirements for this region
- → TDR recently approved!
- The Upgrade II in LS4 introduces picosecond-level timing capabilities and more demanding radiation hardness requirements
- \rightarrow Better than 20 ps achieved with Shashlik and SpaCal technology at high energy
- \rightarrow Crystal fibres in the central region
- Comprehensive R&D ongoing (also interesting for other future projects)
- \rightarrow Test beam measurements with prototypes
- \rightarrow Detailed Monte Carlo simulations
- \rightarrow Study of novel absorber production techniques
- \rightarrow Study of suitable PMTs and development of readout electronics
- \rightarrow Investigation of new radiation-hard and fast scintillators

Thank you!

PicoCal