

Ultra-high granularity electromagnetic calorimetry

Results from the EPICAL-2 prototype and perspectives for digital calorimeters

T. Peitzmann (Utrecht University/Nikhef) for the EPICAL-2 team

CALOR2024, 20th International Conference on Calorimetry in Particle Physics

Tsukuba, Japan, 22/05/2024

Introduction

- Digital calorimetry: count number of charged shower particles in sampling layers
 - Ideally: potential to reduce fluctuations from individual sampling layers
 - High granularity required due to high particle density
- State-of-the-art all-pixel calorimeter prototype
 - Follow up on proof of principle EPICAL-1 (JINST 13 (2018) P01014)
 - EPICAL-2: Si/W stack using ALPIDE sensors, detailed simulation in Allpix²
- Main Motivation:
 - R&D for pixel technology for ALICE FoCal
 - Demonstrate potential of digital pixel EMCal beyond
 - Provide unique shower data to MC developers
- Performance results from test-beam measurements (DESY and SPS)
 - First results at low energy published (JINST 18 (2023) P01038)
 - Update on energy linearity and resolution
 - First studies of shower shape

surements (DESY and SPS) (2023) P01038)

Digital Calorimeter Prototype – EPICAL-2

layer cables

interface boards

ALPIDE output via 1.2 Gb/s serial line readout via 2 levels of FPGA

- 24 layers with each
- 3 mm W absorber ($\approx 0.857 X_0$)
- 2 ALPIDE CMOS sensors
 - NIM A, 845:583–587, 2017
- ultra-thin flex cables (LTU Kharkiv)

C/

29.24 x 26.88 μ m² pixel size active cross section 3 x 3 cm²

compact design: expect $R_M \approx 11 \text{ mm}$

readout schematics

detector setup

EPICAL-2 Measurements

- Cosmic muons (Utrecht University, 2020)
- Test beam DESY (Feb. 2020)
 - Electron/positron, E = 1.0 5.8 GeV
- H6 test beam SPS (Sept./Oct. 2021)
 - Mixed beam, E = 20 80 GeV

EPICAL-2 Event Displays

-400 -200 0 200 400 rOW

Linearity of Response

- Average response as a function of beam energy from MC simulation
- Alternative response variables:
 - Number of e[±] traversing sensors ullet
 - Ideal measure: very good linearity \bullet
 - Number of clusters N_{clus} \bullet
 - Close to ideal number of e[±] \bullet
 - Significant non-linearity, saturation most likely due to cluster overlap
 - Number of hits N_{hits}
 - Larger values due to cluster size
 - Small non-linearity, saturation due to hit \bullet overlap less relevant

Measured Energy Linearity

- Average response as a function of beam energy
- Qualitative behaviour of data reproduced by simulation: similar difference between clusters and hits
- Slightly stronger non-linearity in data
 - Seen in both clusters and hits
 - Apparent non-linearity influenced by uncertainty in DESY beam energy
- Good linearity for N_{hits} \bullet

- Resolution shows expected behaviour
- Superior performance for "particle counting" $\sigma(N_{\rm clus}) \approx \sigma(N_{\rm e})$

Energy Resolution

8

- Experimental data show slightly worse resolution
 - Partially due to contribution from test beam energy spread
- Resolution comparable to state of the art

- Resolution shows expected behaviour
- Superior performance for "particle counting" $\sigma(N_{\rm clus}) \approx \sigma(N_{\rm e})$

Energy Resolution

- Experimental data show slightly worse resolution
 - Partially due to contribution from test beam energy spread
- Resolution comparable to state of the art 9

Longitudinal Shower Profiles

- Average response (N_{hits}) as a function of depth
 - Each layer equivalent to 85.7% X₀
- Similar for N_{clus}
- Qualitatively well described by simulation
 - Small differences: deeper shower in simulations

Shower Maximum

- Shower maximum t_{max} obtained from fits of Γ distribution
- Depth increases with $\approx \ln E$
 - In most cases, t_{max} smaller than literature ulletestimate

$$\ln\left(E/E_c\right) - 0.5$$

- Deeper maximum for hits vs clusters at low energy, reversed at high energy
 - Most likely subtle interplay of cluster size and saturation for varying depth
 - Significant bias from saturation for clusters
- Deeper maximum for simulation, but qualitative features described

Lateral Shower Profiles

- Detailed measurements of hit density evolution
- Narrow shower at start broadens in deeper layers

- Expected evolution as a function of energy
- Good agreement of simulation
 - Basis for 3D description of shower shape

Shower Width

- Shower becomes more narrow with decreasing depth and increasing energy
- Early part of shower has sub-mm width for all energies
- Basis of extremely good two-shower separation
- Also useful for PFA

Event-by-event fluctuations to be studied

Fits of Lateral Shower Profiles

- Lateral hit density distribution for different depths
- Well described by fits of power-law like function

$$g(r) = p_0 \left(\frac{p_1^2 - 3p_1 + 2}{2\pi p_1^2 p_2^2} \right) \left(1 + \frac{r}{p_1 p_2} \right)$$

- Starting point of analytical 3D shower shape model
 - Should allow improved shower reconstruction
 - Work in progress \bullet

EPICAL-2 Event Displays

High potential of pixel technology for more sophisticated shower reconstruction e.g. advancement of PFA?

Application: Two-Shower Separation

- Longitudinally integrated distribution makes separation challenging
- Much more information available in high-granularity 3D distributions

EPICAL-2 Allpix² simulation

30 GeV e⁻ + 250 GeV e⁻ 1.2 mm separation single event

n makes separation challenging high-granularity 3D distributions

Application: Two-Shower Separation

- Full pixel detector information very powerful
 - Two-shower separation down to 1 mm should be possible
- Systematic studies to be done

EPICAL-2 Allpix² simulation

30 GeV e⁻ + 250 GeV e⁻ 1.2 mm separation single event

Summary

- Digital calorimetry works
 - Very good performance of EPICAL-2
 - ALPIDE sensor: very low noise, readout speed compatible with modern experiments
 - Technology suitable for ALICE FoCal pixel layers
- Good energy linearity and resolution
 - Study limited by accelerator properties at DESY
- Very strong potential so far "scratching the surface"
 - Use full 3D shower information for single- and multi-particle reconstruction
 - Improved jet measurements?
 - Study performance for particle flow algorithms
- Possible limit of current technology at high energy from saturation R&D for dedicated calorimeter pixel chip required

Outlook on Digital Calorimetry

- Beyond proof of principle: digital electromagnetic calorimetry works
- Very high potential
 - Standard calorimeter performance is good further improvements possible \bullet
 - Possible improvement by orders of magnitude in
 - Two-shower separation, position/angular resolution
 - Unique information for fine-tuning MC
 - Adaptation/optimisation of PFA and PID to be done
- Major challenges
 - Development of dedicated sensor
 - Local dynamic range: optimise granularity and bit depth
 - Integration: preserve compactness for small $R_{\rm M}$
 - Cooling, cabling, etc.

Power consumption, rate capabilities, data reduction, radiation, trigger capability(?), timing(?)

EPICAL-2 Team

Nik|hef

a Department of Physics and Technology, University of Bergen, Bergen, Norway c Research and Production Enterprise "LTU" (RPE LTU), Kharkiv, Ukraine d School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom e Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany f Yonsei University, Seoul, Republic of Korea g Nikhef, National Institute for Subatomic Physics, Amsterdam, Netherlands h European Organization for Nuclear Research (CERN), Geneva, Switzerland i Department of Physics, University of Oslo, Oslo, Norway

- J. Alme,^a R. Barthel,^b A. van Bochove,^b V. Borshchov,^c R. Bosley,^d A. van den Brink,^b E. Broeils,^b H. Büsching,^e V.N. Eikeland,^a O.S. Groettvik,^a Y.H. Han,^f N. van der Kolk,^{b,g} J.H. Kim,^f T.J. Kim,^f Y. Kwon,^f M. Mager,^h Q. W. Malik,ⁱ E. Okkinga,^b T.Y. Park,^f T. Peitzmann,^b1 F. Pliquett,^e M. Protsenko,^c F. Reidt,^h S. van Rijk,^b K. Røed,ⁱ T.S. Rogoschinski,^e D. Röhrich,^a M. Rossewij,^b G.B. Ruis,^b E. H. Solheim,^{a,i} I. Tymchuk,^c K. Ullaland,^a N. Watson,^d H. Yokoyama^{b,g}
 - b Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht, Netherlands

Backup

Allpix² Simulations

SPS H6 Beam Composition

Detector Response

- Number of hits (N_{hits}) or number of clusters (N_{clus}) usable as response observable
 - Well defined peaks scaling with beam energy
- Allpix² simulation
 - Tuned to number of hits at 5 GeV
 - Very good description for hits at all energies
 - Good description for clusters
 - Sensitive to details of cluster algorithm

Energy Linearity

- Average response as a function of beam energy
 - Described by linear fit ullet
 - Constrained to (0,0) by pedestal measurements
 - Behaviour reproduced by simulation lacksquare
- Small apparent deviations from linearity in ratio
 - Perfect linearity in hits from simulation
 - Hits in data agree with EPICAL-1 ullet
 - Non-linearity in hits strongly influenced by \bullet uncertainty in DESY beam energy
 - NIM A, 922:265–286, 2019
 - Stronger non-linearity from N_{clus} lacksquare
 - Reproduced in simulation
- Response consistent with full linearity at low \bullet energy

- Resolution shows the expected behaviour for calorimeters
- Experimental data likely contain a significant contribution from beam energy spread at DESY
- "Particle counting" (N_{clus}) shows superior performance here
 - Confirmed by simulations

Energy Resolution

- Resolution from hits better than EPICAL-1 results
- Resolution from N_{clus} close to analog SiW ECAL (CALICE) physics prototype NIM A 608:372-383, 2009
- Cluster algorithm not yet optimised lacksquare