

Performance Study for Jet Energy Resolution of the Dual-Readout Calorimeter with GEANT4 Simulation

Kyuyeong Hwang On behalf of the Korea Dual-Readout Calorimeter Team

20th International Conference on Calorimetry in Particle Physics May. 23, 2024

Dual-Readout Calorimeter

IDEA detector concept

- **IDEA detector concept:** proposed in conceptual design report of **FCC-ee and CEPC**
- simultaneously
- What is the Dual-Readout Calorimeter (DRC) \bigcirc
 - Precise hadronic energy measurement is difficult due to
 - Non-gaussian fluctuation from EM shower component
 - **Invisible energy** induced during shower development
 - **DRC** can achieve **outstanding energy resolution**
 - by measuring the EM component and correcting hadron energy

1.
$$C = E\left[f_{EM} + \frac{1}{(e/h)_{C}}(1 - f_{EM})\right]$$

2.
$$S = E\left[f_{EM} + \frac{1}{(e/h)_S}(1 - f_{EM})\right]$$

3.
$$f_{EM} = \frac{(h/e)_C - (C/S)(h/e)_S}{(C/S)[1 - (h/e)_S] - [1 - (h/e)_S]}$$

Dual-Readout Calorimeter is included in the **IDEA detector concept** which can **detect** both **EM & hadronic particles**

Simulation Setup

- - ~ 10 nuclear interaction length
 - for EW window
 - in copper absorber

Simulation Setup

Detector geometry in the GEANT4 simulation

- High granularity SiPM layers as a readout system
 - Scintillation (PS) and Cerenkov (PMMA) fibers are implemented alternatively with 0.5 mm spacing
- **Full optical photon simulation in GEANT4**
 - Huge time consumption for simulation (~ 1 hour /GeV /Event /CPU)
 - First result with full optical photon simulation

Optical Photon in **GEANT4**

Calibration

- For calibration, 20 GeV e- simulation is utilized
 - **EM particles** has **same response** between two independent channels, **Cerenkov and scintillation channels**

Calibration procedure

- \bullet
 - in Phi direction, towers are having same geometry
- Simulation for those towers is done with **20 GeV e- beams**, getting **# of photoelectrons**

With geometrical feature, modules composing the DRC could be categorized into 92 components, towers from 0 to 91

Minimizing

1. Energy measurement defined as

$$E = N_{pe}^{0} C C^{0} + N_{pe}^{1} C C^{1} + \dots + N_{pe}^{51} C C^{51} + \dots + N_{pe}^{91} C C^{91}$$

2. With 20 GeV e- simulation, measured energy should be 20 GeV Define chi-square with the residual between 20 GeV and measured one

$$\chi^2 = \sum [20 \text{ GeV} - E]^2$$

3. Calibration constant estimated by minimizing the chi-square

Calibration

- With calibration constant, # of p.e. from simulation could be converted to the energy

 - Linear relationship of beam energy and reconstructed energy is validated in later slide

With 20 GeV e- simulation, energy of Cerenkov and scintillation channel are well reconstructed with 20 GeV

Electromagnetic Energy Resolution

EM energy resolution with 5 ~ 110 GeV e⁻ simulation \bigcirc

- Resolution result for each energy is scaled to $1 / \sqrt{E}$ \bullet
- Linearity is satisfied within 1% level
- **Stochastic term** of the resolution is estimated ~11.5%

Attenuation

Hadronic particle's behavior in the calorimeter \bigcirc

- Hadronic shower
 - developed relatively **deeper than EM shower**
 - has large depth fluctuation
- Longitudinally unsegmented fiber calorimeter \bullet
 - shower affected different amount of attenuation w.r.t the depth of shower development
- \bullet

To moderate this effect, attenuation length for the scintillation fiber is estimated and utilized to the correction

Hadronic Energy Resolution

Hadronic energy resolution with 5 ~ 110 GeV pi+ simulation \bigcirc

- Resolution result for each energy is scaled to 1 / JE
- Attenuation correction is applied to scintillation channel
- Dual-Readout correction shows ~ 22.4% stochastic term for the hadronic energy resolution

1/√E

Jet Events

Jet events for the simulation \bigcirc

- To get a quark have being hadronized, satisfaction of the color confinement is mandatory \bullet
 - u and ubar quarks are generated simultaneously
- To make CoM energy zero, generated quarks having same energy with back-to-back direction \bullet
- Events are **generated** and jets are **hadronized** with **Pythia8** \bullet

Energy reconstruction with Jet events \bigcirc

- **Obtain energy response from whole detector** \bullet
 - e.g) **40 GeV** u and ubar quark event
 - corresponding energy is 80 GeV

Jet Energy Resolution

Estimation of Jet energy resolution with u quark jet simulation \bigcirc

- Generated u and ubar quarks have the energy from 20 GeV to 110 GeV \bullet
- Resolution result for each energy is scaled to $1 / \sqrt{E}$
- Stochastic term of resolution: 34.6% stochastic term → with 100 GeV: 3.7% resolution

Energy Separation

Energy separation between the events with 80, 91 and 125 GeV u and ubar quark jets simulation \bigcirc

- \bullet
- The DRC shows good separation between the energies that correspond the mass of bosons \bullet

As future collider experiment aiming to see Higgs, mass separation between bosons is the most important aspect

E [GeV]

Summary

- Outly Dual-Readout Calorimeter performance estimation with GEANT4 simulation
 - 4pi full projective detector with full optical photon simulation via GEANT4
 - Full optical photon simulation was conducted
 - Energy Resolution for EM, hadronic and jet energy resolutions are estimated
 - Jet: for 100 GeV jet, DRC has ~ 3.7% resolution which satisfies the requirement of the future collider
 - Energy separation with respect to bosons
 - DRC shows that the energy corresponding each boson's mass are well separated

with GEANT4 simulation mulation via GEANT4

Optical Physics Setup

Calibration Constant Result

Calibration constant extraction result shows very stable, which means that calibration is done well \bigcirc

Fluctuation from # of tower 80, it is came from the leakage due to no towers at far endcap region \bullet

Example Simulation Result

• 20 GeV e- simulation

Example Simulation Result

O GeV pi+ simulation

Example Simulation Result

40 GeV u and ubar jets simulation 1

