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SiD Digital ECal Based on MAPS
❖ SiD upgrade now under development with 

25 x 100 µm2 (or 25 x 50 µm2) digital pixels 
in electromagnetic calorimeter and tracker.

❖ Replacing the ILC TDR ECal design 
using 13 mm2 analog pixel sensors.

❖ How well can we measure energy and shower structure with this digital system:

❖ Compared to SiD baseline with analog measurements?
❖ Can the detailed structural measurements be used to improve measurement?
❖ Would a neural net optimization offer an improvement?

❖ What are the limits of transverse separation and measurement?
2

SiD



3

Large area MAPS for SiD tracker & ECal
Benefits of large-area MAPS: 
• Standard CMOS foundry, low resistivity: cost ⇩  
• Sensing element and readout electronics on same die 

• In-pixel amplification: noise ⇩, power ⇩  
• No need for bump-bonding: cost ⇩  

• Area > 5x20 cm2  enable O(1) m2 modules  

Several design challenges: 
• Large on-die variations, mismatch 
• Yield 
• Stitching layout rules 
• Distribution of power supply 
• Distribution of global control signals/references

Goals of R&D: find solutions and 
explore novel design techniques

An example of the SiD Tracker and the ECal overall design

MAPS

L. Rota
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Main specifications for Large Area MAPS development
Parameter Value Notes
Min Threshold 140 e- 0.25*MIP with 10 µm thick epi layer
Spatial 
resolution 7 µm In bend plane, based on SiD tracker 

specs
Pixel size 25 x 100 µm2 Optimized for tracking (or 25 x 50 µm2)
Chip size 5 x 20 cm2 Requires stitching on 4 sides

Chip thickness 300 µm <200 µm for tracker. Could be 300 µm for 
EMCal to improve yield.

Timing 
resolution (pixel) ~ ns Bunch spacing: C^3 strictest with   

5.3->3.5 ns; ILC is 554 ns
Total Ionizing 
Dose 100 kRads Total lifetime dose, not a concern

Hit density / train 1000 hits / 
cm2

Hits spatial 
distribution Clusters Due to jets 

Balcony size 1 mm Only on one side, where wire-bonding 
pads will be located.

Power density 20 mW / cm2 Based on SiD tracker power 
consumption: 400W over 67m2 

SiD Tracker and the ECal

MAPS

L. Rota
25 x 100 µm2 

ECal performance  
same as  

50 x 50 µm2

<1 mW/cm2 

for 1% duty cycle



J. Brau  - 20 May 2024SiD Digital ECal

Large Area MAPS - Highlights and Next Steps
Approach: 
• Engaged with the scientific community to share know-how 
• Focus on long-term R&D, targeting simultaneously: 

• ~ns timing resolution 
• Power consumption compatible with large area and low material budget 
• Fault-tolerant circuit strategies for wafer-scale MAPS 

Highlights: 
• Designed pixel architecture with binary readout optimized for linear colliders 
• Submitted a small pixel matrix for fabrication on CERN WP1.2 shared run 
• Architecture will allow us to evaluate technology in terms of defects and RTS 
Next steps: 
• Evaluate performance of 1st SLAC prototype on TJ65nm (2023). 
• New design combining O(ns) timing precision and low-power (2024/2025). 
• Stretch Goals: design of a wafer-scale ASIC (2025/2026, design only) 
Engagement : 
• Higgs Factory detector initiative R&D 
• DRD 7.6 on common issues of power distributions compatible with stitching 

5

Current sensor optimization in 
TJ180/TJ65 nm process 
Effort to identify US foundry on going 

Layout of SLAC prototype 
for WP1.2 2022 
shared submission 
on TowerSemi 65nm 

A. Habib et al 2024 JINST 19 C04033
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Model of longitudinal structure of SiD ECal
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   Total = 27 XO

Incident Particle   HCAL 
Minimize sampling 
gap to achieve 
optimal Moliere 
radius (14 mm) & 
shower separation

20 layers of 2.243 mm W 
+ 1 mm sampling gap

10 layers of 4.486 mm W 
+ 1 mm sampling gap

   20 GeV γ average profile
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10 GeV Shower in 25 x 100 μm2
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10 mm

10 mm

10 mm

10 mm
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Ultimate Resolution (mips)
All mips
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3 %
 9.8 % / E ⊕ 1.1 %

8.8 % / E ⊕ 0.2 %

10 GeV 
2.8%

Mip threshold  
= 0.1 MeV

mip counted once in a layer, 
when it enters sensor.

10 GeV 
3.3%

Pixels 
w/mips
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Resolution vs. Energy (hits & mips)
Resolution vs. Energy 
(hits & mips)  
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3 %
 

 
16.4 % / E ⊕ 2.0 %
9.8 % / E ⊕ 1.1 %
8.8 % / E ⊕ 0.2 %

Pixel hit threshold  
   = 1 keV = 270 e’s

Mip threshold  
= 0.1 MeV

Note - mip is 
counted once, 
in pixel it first 
passes through.

10 GeV 
5.8%

10 GeV 
3.3%
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Example of hit distribution in a MAPS
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Hits no Mips 
 Hits w/Mips

❖ Most hits isolated
❖ Single hit cluster

❖ Multiple hit clusters
❖ Often single mip,
❖ Or no mip

❖ Counting clusters should 
reduce hit fluctuations

25 µm

10
0 

µm

mip = e± > 0.1 MeV 
hit = > 1 keV or  270 e’s

10 GeV γ

Yellow - hit w/o mip 
Others - 1 or more mips

Cluster definition:  
Collection of hits in 
contact
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Resolution vs. Energy (hits/clusters/mips)
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3 %

Resolution vs. Energy 
(hits/clusters/mips)               

 
 

 

16.4 % / E ⊕ 2.0 %
13.7 % / E ⊕ 1.9 %
9.8 % / E ⊕ 1.1 %
8.8 % / E ⊕ 0.2 %

Simple cluster performance is better than hit counting.
We can do better!

Pixel hit threshold  
   = 1 keV = 270 e’s

10 GeV 
5.8%

10 GeV 
4.9%
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All Clusters are not the same
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❖ Some clusters are numerous mips.

25 µm

10
0 

µm

e± > 0.1 MeV for only 1 mip
Cluster mips

Cluster size 15 
 Either few mips 
 Or Many mips
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Mips/cluster vs. showerR    10 GeV  γs - 2000 showers
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Wt = a exp(-bR) + c 
a,b,c = f(ClSz)

25 µm units

25 µm units

25 µm units

25 µm units

25 µm units

25 µm units

Size 1 clusters Size 2 clusters Size 3 clusters

Size 4 clusters Size 5 clusters Size 6 clusters

1

65

32

4

Large mip clusters 
near shower axis
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10 GeV  γs - 2000 showers

Apply weight to clusters: 

RadWt = a exp(-bR) + c 

   a,b,c = f(ClSz)

14
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Resolution vs. Energy (hits/clusters/mips)
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3 %

Resolution vs. Energy 
(hits/clusters/mips)     
&  weighted clusters.

 
 
 

 

16.4 % / E ⊕ 2.0 %
13.7 % / E ⊕ 1.9 %
12.2 % / E ⊕ 1.4 %
9.8 % / E ⊕ 1.1 %
8.8 % / E ⊕ 0.2 %

Cluster properties weighting 
improves performance.

10 GeV 
4.9%

10 GeV 
4.3%

 Can a Neural Net Improve Performance? 
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TMVA Neural Net 

TRAINING - 10 GeV  
    2000 events 

2,502,000 hits 
1,878,999 clusters 

# Store model to file 
model.save('modelRegression%s.h5'%Efact) 
model.summary() 

# Book methods 
factory.BookMethod(dataloader, TMVA.Types.kPyKeras, 'PyKeras', 
        ‘H:!
V:VarTransform=D,G:FilenameModel=modelRegression%s.h5:FilenameTrainedModel=
trainedModelRegression%s.h5:NumEpochs=20:BatchSize=32'%(Efact,Efact))

16

Neural net cluster weighting based on 
   1. Three input parameters =  
      Cluster size,layer num,shower radius 
   2. Five input parameters =  
       Add cluster length in Y and Z
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Weighted function vs. TMVA neural net (10 GeV γs)
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TMVA mips=f(ClSz,Layr,R,dY,dZ)TMVA mips=f(ClSz,Layr,R)Wt=f(ClSz,R)

4.4% 4.3%4.3%

4.9%
unWtd 
clusters

4.3%
Wtd 

clusters

5.8%
Hits

Weighted 
Clusters 
Analysis

Neural Net 
Analysis
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Results: Energy Resolution
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Energy 1 2 5 10 20 50

clusters 13.8% 10.1% 6.6% 4.9% 3.7% 2.7%

wtd clusters 12.3% 8.8% 5.7% 4.4% 3.2% 2.2%

3 par TMVA 12.6% 9.5% 6.2% 4.4% 3.4% 2.2%

5 par TMVA 12.8% 9.4% 5.9% 4.3% 3.1% 2.2%

❖ Weight fits for 2, 10, 50 GeV; extrapolated for 1, 5, 20 GeV.

❖ NN optimized for each energy

❖ 3 par = cluster size, layer, radius

❖ 5 par = cluster size, layer, radius, dY, dZ

Weighted clusters already 
achieve performance of  
this neural net.
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Another topic: 
Potential impact of high granularity on particle flow measurements
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Transverse Shower Structure

20

10 mm

10 mm

10 mm

10 mm

10 GeV
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Multi-shower of SiD MAPS compared to SiD TDR 
40 GeV π0 → two 20 GeV γ’s

 SiD TDR hexagonal sensors                                New SiD fine pixel sensors
             13 mm2 pixels                                                     25 μm x 100 μm pixels

21
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h → Zh 
   Z → jets 
   h invisible
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 γ’s in jet  /  SiD baseline ECal (13mm2 pixels)
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(mm)

(m
m

)

9.7 GeV

5.8 GeV

SiD baseline (13mm2)
(mm)

(m
m

)

SiD baseline (13mm2)

0.8 GeV
4.1 GeV

❖ 13 mm2 pixels of analog SiD ECal         
❖ 5000x granularity with digital MAPS ECal 
❖ Future MAPS integration into full SiD simulation will define scale of improvement?

5000x granularity  
w/ MAPS ECal

5.8 GeV

9.7 GeV
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Conclusion
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❖ Application of monolithic active pixel sensors (MAPS) to SiD digital ECal offers 
excellent performance:

❖ Energy measurement
❖ Transverse energy containment & particle flow separation

❖ Well defined EM shower structure allows simple algorithmic optimization of 
energy measurement.

❖ An effort led by SLAC is progressing on the needed MAPS development.
❖ Neural nets have been studied to improve energy measurement:

❖ They have not yet provided improvement over the “informed” algorithm.

❖ We are also investigating the application of the timing measurements.

❖ Future - simulation of full SiD detector with high granularity of MAPS ECal


