

Comparison of the Performance of the Dual-Readout Calorimeter for different absorbers

CALOR 2024 May 23, 2024

Seoyun Jang (Yonsei University)

On behalf of the Korea Dual-Readout Calorimeter Team

Introduction Dual-Readout Calorimeter

- DREAM FOR FUTURE
- A major factor which makes hard to measure energy of hadronic particles is event-to-event fluctuations in fraction of EM shower components (*f*_{em}).
- The dual-readout method **allows to measure** f_{em} of single event, by using complementary information from scintillation and Cherenkov light different response ratio to EM and non-EM shower components (e/h)

1.
$$S, C = E[f_{em} + \frac{1}{(e/h)_{S,C}}(1 - f_{em})]$$

3. $\chi \equiv \cot\theta = \frac{1 - (h/e)_S}{1 - (h/e)_C}$
2. $f_{em} = \frac{(h/e)_C - (C/S)(h/e)_S}{(C/S)[1 - (h/e)_S] - [1 - (h/e)_C]}$
4. $E = \frac{S - \chi C}{1 - \chi}$

S, C : Signals from scintillation | Cherenkov channel

- Dual-Readout Calorimeter (DRC) can offer excellent energy resolution for hadron showers, even for EM showers – in single detector.
- DRC has been included in IDEA detector concept, which is proposed in conceptual design report (CDR) of FCC-ee & CEPC.
- On this talk, the comparison of absorbers for DRC, based on GEANT4 simulation will be presented.

Scehmatic figure of IDEA detetctor Eur. Phys. J. Spec. Top. 228 (2019)

Simulation Setup Geometry, physics setup

- Simulation setup is based on Geant4 toolkit, 10.5.p01, physics list FTFP-BERT.
- The geometry is **longitudinally unsegmented**, box shape, 7x7 modules.
- 5 different absorbers were used -

Copper, Brass (Cu:Zn=7:3), Iron, Lead, Tungsten

- 1mm diameter scintillating & Cherenkov (Clear) optical fibers are implemented.
- Optical physics process inside fibers are fully simulated.
- SiPM is attached for each single fibers.

Optical Photon inside fibers, (GEANT4)

Simulation Setup Calibration

- Matched total energy deposit of **20 GeV electron** in entire module to signal of the scintillation and Cherenkov light. (# of p.e.)
- This obtained calibration constant was **applied to events of any particles**, including hadrons.
- Light yield of different absorbers show dependency generally on their Z value.
- For hadronic events, attenuation correction is applied.

Simulation Result Single electron – Energy Distribution

- The signal gets highly **dependent on impact point** as the Z value (~radiation length) of absorber gets bigger.
- This affects directly on energy resolution.

Abosrber	Cu	Brass	Fe	Pb	W
Radiation Length (cm)	1.436	1.528	1.757	0.561	0.350

Radiation length of absorbers (pdg)

Simulation Result Single electron – Energy Linearity

- Used mean & RMS of guassian fit function of reconstructed energy Scintillation, Cherenkov, and Summation channel.
- Energy linearity of electrons, 5, 10, 20, 30, 50, 70, 90, 110 GeV.
- Regardless of energy or absorber, energy linearity matches in $\pm 1\%$

Simulation Result Single electron – Energy Resolution

- Used mean & RMS of guassian fit function of reconstructed energy Scintillation Cherenkov, and Summation channel.
- Energy resolution of electrons, 5, 10, 20, 30, 50, 70, 90, 110 GeV.
- Low Z absorbers show relatively better resolution than Pb, W 11~12% of stochastic term.

Simulation Result Hadronic particle – Attenuation correction

- For hadrons, they deposit energy in deeper inside than EM particles, which is used to calibrate energy.
- Since the distance between shower maximum and readout differ event by event, **attenuation correction** for light inside optical fiber is needed **only for scintillation**, since attenuation length of scintillation fiber is far more shorter than Cherenkov fiber.

Simulation Result Hadronic particle – h/e calculation

- To apply dual-readout correction on hadronic events, h/e (response to hadronic / EM) ratio should be calculated for each absorbers.
- h/e ratio can calculated by scanning their values from $0 \sim 1.0$, finding the value where the reconstructed energy best matches to the initial beam energy at $f_{em} = 1$.

Simulation Result Single charged pion – Energy Linearity

- Used mean & RMS of distribution of reconstructed energy Scintillation Cherenkov, and gaussain fit for DR corrected ch.
- Energy linearity of pions, 5, 10, 20, 30, 50, 70, 90, 110 GeV.
- Regardless of energy or absorber, energy linearity of dual-readout corrected energy is constant within few %.

Simulation Result Single charged pion – Energy Resolution

- Used mean & RMS of distribution of reconstructed energy Scintillation Cherenkov, and gaussain fit for DR corrected ch.
- Energy resolution of pions, 5, 10, 20, 30, 50, 70, 90, 110 GeV.
- Low Z absorbers show stochastic term of corrected channel under 30%, for copper 25.8%/ \sqrt{E}

- **Compared performance of Dual-Readout Calorimeter** (DRC) between different absorbers.
- Simulation was done in 7x7 box geometry, 10< nuclear interaction length, fully simulated optical physics process.
- For electromagnetic particles, **linearity matched in** $\pm 1\%$ **range** regardless of energy or absorber type.
- Energy resolution for EM particles, showed different tendency for relatively low Z (Cu, Brass, Fe) and high Z (Fe, W) absorbers.
- Timing resolution showed better as radiation length of absorber material increase.
- By measuring (e/h) value for each absorbers, dual-readout corrected energy was calculated for all absorber types.
- For hadronic particle (pion), low Z absorbers gave stochastic term of corrected energy under 30%.

Backup

Material Specification Optical Fibers, SiPM

Scintillating Fiber (SCSF-78)

See the

Table 1		SK-40				
Item		Specification				
		Unit	Min.	Тур.	Max.	
Optical Fiber 1	Core Material	-	Polymethyl-Methacrylate Resin			
	Cladding Material	-	Fluorinated Polymer			
	Core Refractive Index	-	1.49			
	Refractive Index Profile	-	Step Index			
	Numerical Aperture	-	0.5			
	Core Diameter	μm	920	980	1,040	
	Cladding Diameter	μm	940	1,000	1,060	
Approximate Weight		g/m	1			

Cerenkov Fiber (SK-40)

Sectional View

Attenuation Length

(Handbook of Fiber Optic Data Communication, 4th edtiion)

- Photon detection efficiency vs. wavelength (typical example)

SiPM – Hamamatsu S13615-1025N Manufacture Specification Sheet

(PMMA)

blue

inner for multi-cladding

SCSF-78

Cladding

SCSF-78

Emission Spectra

2.8

450

Transmission Loss

O: 1.4x1022

>4.0

<u>Manufacture Specification Sheet</u> (Kuraray) <u>Attenuation Length</u> (LHCb SciFi Project)

Simulation Result Light Yield / GeV

• Light yield surely shows dependency on absorber material's radiation length (~ Z value) affects energy resolution.

Simulation Result Angular Dependency, Linearity e-

20 *GeV* $e^-(\theta, \phi) = (0 \sim 3.0^{\circ} (0.5^{\circ} unit), 1.0^{\circ}), 1000$ evts / point Used Std & Mean value for Pb & W, not of gaussian fitting function.

Simulation Result Angular Dependency, Resolution e-

20 GeV $e^{-}(\theta, \phi) = (0 \sim 3.0^{\circ} (0.5^{\circ} unit), 1.0^{\circ}), 1000 \text{ evts / point}$ Used Std & Mean value for Pb & W, not of gaussian fitting function.

Simulation Result Single electron – Timing Resolution

- Calculated timing resolution, by getting leading edge of peak timing, event by event.
- Taking sigma of leading edge distribution as timing resolution, compared these in different leading edge %.
- Increase of time resolution on high leading edge % region is due to different process between S & C.

Simulation Result h/e calculation – matching energy

- Only matching reco. energy near to beam energy has problem.

- Most events have reconstructed energy at $f_{em} < 0$, which is unphysical.
- So gave also condition that **most of events should have** $f_{em} > 0$

=>
$$|(\overline{X} - 2\sigma) > 0$$
 (of X-Projection)

DR Absorber Material Simulation Shower Profile

- Compared radial & longitudinal energy deposit on different absorbers.

- The tendency followed their radiation length & nuclear interaction length

Simulation Result Copper – 20GeV e-

Simulation Result Brass – 20GeV e-

Simulation Result Iron – 20GeV e-

Simulation Result Lead – 20GeV e-

Simulation Result Tungsten – 20GeV e-

Simulation Result Copper – 20GeV pi-

Simulation Result Brass – 20GeV pi-

Simulation Result Iron – 20GeV pi-

Simulation Result Lead – 20GeV pi-

Simulation Result Tungsten – 20GeV pi-

