

Recent operation status of Belle II electromagnetic calorimeter and relevant systems

1

Kenkichi Miyabayashi (Nara Women's University/KEK IPNS, Japan) for Belle II calorimeter group Calor2024 conf., Tsukuba, Japan 2024 May. 23rd

Outline

- Calorimeter for e⁺e⁻ collider at Y region
- SuperKEKB and Belle II
- Belle II electromagnetic calorimeter
 - CsI(TI) with waveform sampling readout
 - Relevant systems
- Calibration and performance
- Summary

Calorimeter for e⁺e⁻ at ↑ region

- Wide dynamic range: 20MeV~7GeV
 - 1/3 of B decays have π^0 , most of γ ~100MeV.
 - Radiative B decays ($B \rightarrow K^* \gamma$, etc.) γ up to 4GeV
 - Bhabha, $e^+e^- \rightarrow \gamma\gamma$ calibration, up to 7GeV
- High energy resolution
 - $\sigma_{\text{E}}/\text{E}$ ~ 2% above 1GeV
 - $\sigma_{\gamma\gamma} \sim 5 MeV/c^2$ for π^0
- High position resolution
 - σ_x : 5~10mm at the incident point

SuperKEKB

TiN-coated beam pipe with antechambers

to aim KEKB × 30 luminosity

Nano-beam collision

To increase luminosity, small β function is used. To handle hourglass effect, β >size of collision spot, large crossing angle, one bunch behaves as "super bunch".

Belle II Detector

K_L and muon detector:

Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

EM Calorimeter: CsI(TI), waveform sampling

(7GeV) Beryllium beam pipe 2cm diameter

electron

Vertex Detector 2 layers DEPFET + 4 layers DSSD

Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification

Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

Upgrade to give optimum performance under ×20 beam background!

CsI(T₁) with PIN-PD readout has been used at B-factories

Belle II inherited Belle Csl(T₁) calorimeter

Csl(T_l) large light output, but...

Challenge is to realize beam background immunity

Waveform sampling readout

1.76MHz, 18bits digitizer, waveform fit to get energy and timing (i.e. Digital Signal Processing)

Reduction factors; ×7 BG showers ×1.5~2 pileup noise 10

Electronics arrangement

PCIe40 board

PCI Express board with a large FPGA and 48 optical transceivers
Originally developed for LHCb and ALICE

Its functionality is also suitable for the readout hardware of the Belle II DAQ.

PCIe40 (PCIExpress card)

of input channels : COPPER : max 4 PCIE40 : max 48

Crystal-by-crystal energy calibration

Energy response of individual crystals is calibrated using $e^+e^- \rightarrow \gamma\gamma$ events.

- only the most-energetic crystal in each shower is considered.
- upper edge (maximum energy deposit) does not depend on inactive material distribution.

11% standard deviation in calibration constants reflects the variation in light output among barrel crystals.Calibration constants have increased an average of 2.0% since 2020: decrease in light output due to radiation damage.

Clustering algorithm

Seed crystal : Local maximum energy, exceeding 10 MeV.

Belle : the hits exceeding proper threshold inside 5×5 crystal matrix surrounding the seed crystal are considered.

Belle II : highest-N hits are considered among 21 crystals, i.e. corner crystals of 5×5 matrix are excluded for the immunity to beam background.

Observed performance

 $e^+e^- \rightarrow \mu^+\mu^-\gamma$ events are also visited, for 1 GeV γ , $\sigma_E/E = 2.2\%$, timing resolution = 4 ns.

Pulse Shape Discrimination (PSD)

In CsI(T/), scintillation time evolution changes depending on dE/dX, i.e. difference between hadron and photon incidents.

exhibit different pulse shape

By rejecting photon-like clusters, π^0 mass peak disappears.

Luminosity monitoring

Forward Endcap (FE) Backward Endcap (BE)

oz Sor

Back-to-back large energy depositions are identified by at most 2 adjacent endcap sectors.

Online measurement exhibits ~2% systematic discrepancy from offline, within possible uncertainty.

Summary

- SuperKEKB is aiming × 30 luminosity w.r.t. KEKB.
- 8736 CsI(T/) counters inherited from Belle, all alive.
- In order for high rate capability and beam background immunity, waveform sampling readout electronics has been introduced. COPPER → PCIe40 replacement has been done.
- Stably working, neutral particles (γ in radiative mupair, π^0 and $\eta \rightarrow \gamma \gamma$) are properly seen.
- Luminosity monitor is stably functioining.