

Test Beam results of the Hadronic Calorimeter of the SND@LHC experiment

- SND Experiment
- * SND Detector
- * Test Beam setup
- * Sampling on Muons and HCAL Efficiency
- * Saturation Observed
- Shower Profile
- First Energy calibrations
- Summary & Conclusions

Designed to perform measurements with high-energy neutrinos (100 GeV to a few TeV) produced at the LHC in the region $7.2 < \eta < 8.4$.

SND Detector

*** VETO** system:

* 3 layers of Plastic Scintillating to tag incoming muons

* Neutrino Target & Vertex Detector ~830kg

*5 Walls of 4 units of Emulsion Cloud chambers (ECC)

*Each ECC is 60 emulsion film interleaved with 1m W.

*****Tracker and ECAL

*Scintillating Fibres (SciFI) between each wall

*40x40cm² planes, alternating X and Y

*Staggered 250um polystyrene fibres readout by a SiPM array. ***Hadronic Calorimeter:**

*5 Upstream Layers (**US**):

*Sampling of 20cm Fe + 1cm thickness Scint. Bars

*Dual readout of Scint. Bars with 8 SiPM

* Horizontal bars of 6cm x 1cm x 81cm

***Muon System:**

* 3 Downstream Layers (**DS**):

* Horizontal and Vertical Scintillating bars

* Bars of 1cm x 1cm x 80 cm

Test Beam 2023

All energetic νN collisions produce hadronic showers

- * Understand the share between ECAL and HCAL
- * Energy response, Shower profile, signal linearity, detectors effects...

Setup

- * SPS H8 Beam line Hadrons {100,140,180, 240, 300} GeV
- * Different λ_{int} on **target** {0.5,1,1.5} 4 SciFi planes

Bean

Walls

- * Total of 7.5 λ_{int} for a shower containment of 95% at 300 GeV
- * 4 SciFi layers (x and y planes)
- * 5 Planes of US and 1 DS plane
- * Same DAQ as SND@LHC

Readout and DAQ

SciFi

- 4 13x13cm² SciFi stations
- * 512 SiPM channels available per X and Y to readout a 250um fibre

US layers (HCAL)

- 10 bars per layer, with 8 SiPM readout * per side.
- * 6 Large SiPM and 2 Small SiPM per side
- * MIP response with 60 p.e. (sum of 6 channels)

DAQ

- * Readout through TOFPET2.
- * Time and charge are calibrated using test pulse.
- * Working on TriggerLess mode
- * All signals exceeding threshold are readout by the FE electronics and clustered in time to form events

US Layers

Sampling on MIPs

US QDC distribution

HCAL Efficiency

CALOR 2024 Tsukuba

Extrapolated tracks with good quality ($\chi^2/NDF < 20$) from SciFI-DS to US planes, with hits >10 SiPM (out of 12)

US1 bar central bar - 300 GeV pion 3 Walls

- SiPM channels working under same gain as the experiment.
- TOFPET QDC range max at 180?, saturation observed at 140 QDC units.
 - Large SiPM not saturated (S14160-6050HS have 14k pixels)
- Electronic saturation a 1k Photons agreement on Laser measurement and MC

Gerardo \mathcal{V} asquez (UZH) - 2024 年 5 月 24 日

plane_20_5_1 77.39 معيدانا 42.77 Std Dev 140 QDC max

plane_20_5_2 small SiPM n_v/n_{pixels} 0.15 0.20 0.10 0.25 0.30

Shower Profile

- * **Longitudinal** shower profile for pions on Fe; expected maximum between 1.6 λ and 1.9 λ for 100-300 GeV range -> SciFi3 - SciFi 4/US1
- * Observable: Average signal per event per detector plane.

Preliminary Results - 3 Walls example

* Maximum well reproduced.

.OR 2024

* Large difference of #ch between US and SciFi. Saturation on first layers of US.

MC vs Data - longitudinal shower profile

3Walls -300 GeV

- * Detector length capable of 95% shower containment, tail not observable.
- * Problem of proportionality on US, maybe US saturation (data) and digitation (MC).

Shower in SciFi vs US

Selection

Shower Origin tag: *

- Most upstream **SciFi layer with >36 hits** *
- * Time Cut: **0.1 Clock Cycle for SciFi**
- **US: 3 Clock Cycle** difference wrt SciFi shower (1.5ns)

Distributions

Sum up all QDC: *

- From shower origin from SciFi *
- All US planes

$$E_{shower} = kS + \alpha U$$

- It depends on the shower origins and beam energy.

Energy Resolution

E Resolution of US at different shower origins

Energy SciFi vs US

Summary & Prospects

Results, progress, missing items, open points

- * Successful Test Beam with large statistics collected
- * Sampling per MIP seems to agree with what observed on SND@LHC detector.
- * Clear observation of **Saturation on US** channels on hadronic showers * Possible to explore the <u>use of small SiPM</u>
- * MC: Understand **US digitation** for proper **shower profile**
- * Data: Use small SiPM to provide accurate shower profile.
- *** Good Proportionality of SciFi** response to particle energy
- * Energy share between ECAL and HCAL presented
- * Preliminary energy calibration process gives good resolution of 14% for 300 GeV π

Ultimate goal: Make a full validation of MC and apply calibrations factors to HCAL of SND@LHC

Gerardo \mathcal{V} asquez (UZH) - 2024 年 5 月 24 日

ありがとうございました (Thank you)

 e, μ, τ Identification

Isolated track in 1cm bar

Gerardo \mathcal{V} asquez (UZH) - 2024 年 5 月 24 日

Veto & Muon system

Veto system

