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Development of particle flow algorithm 
with GNN for Higgs factories

Taikan Suehara / 末原 大幹
(ICEPP, The University of Tokyo)

Collaborators: T. Murata (U. Tokyo), T. Tanabe (MI-6 Co.),
L. Gray (Fermilab), P. Wahlen (IP Paris & ETHZ / internship at Tokyo)

Note: This talk includes recent results not
fully confirmed, slides may be updated later.
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• High granular calorimetry
– 3D pixels for imaging EM/hadron

showers at calorimeters
• eg. 108 channels for ILD ECAL

– Separation of particles inside jets
 ~2x better energy resolution by separation of contribution
from charged particles

• Software algorithm essential (as well as hardware design)

• Particle Flow algorithm
– Essential algorithm for high granular calorimetry
– Complicated pattern recognition  good for DNN

Particle flow for Higgs factories



Taikan Suehara et al., CALOR2024 at Tsukuba, 22 May 2024,  page 3

Pandora ParticleFlow algorithm

Widely used since 2008
Reasonably good performance
up to ~50 GeV jets
Confusion dominates at
higher energies
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• Performance improvement
– Confusion dominant at jet energy > 100 GeV
– More efficient way to separate cluster from charged particles

should be investigated
• Integrate other functions

– Software compensation, particle ID etc. closely related to PFA
• Detector optimization

–  Comparison with different detector settings
• PandoraPFA too much depends on internal parameters

– Effect of timing information to be investigated
• With different timing resolution (1 ns, 100 ps, 10 ps, …)

Motivations for DNN particle flow
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Two ways for particle flow with DNN?
Track-cluster matching
from calorimeter hits
• More freedom
• Distance-based connection

more efficient
• We are working this way
Track-cluster matching
from subclusters
• Less input
• Additional clustering

algorithm needed
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• CMS HGCAL
– High granular forward calorimeter

for HL-LHC upgrade at CMS
– Similar to ILD calorimeter (silicon pixel + scintillator)

• Inspired by CALICE development

• Reconstruction at HGCAL
– Pileup/noise to be separated by software
– Numerous particles from ~200 pileups

• Difficult to handle: software algorithm critical
• DNN reconstruction being investigated

– Reasonable performance obtained up to ~50 pileups?

GravNet for CMS HGCAL
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The network

Input/output obtained for each hit at calorimeter
Input: Features at each hit (position, energy deposit, timing)
Output: “condensation coefficient” β, position at virtual coordinate (2-dim)
   optional output of features such as energy, PID (not used now)
Dense (fully-connected layer) inside each hit, GravNet connects hits

Rather complicated network
with ~30 hidden layers

“Object condensation” loss function
is applied (shown in next page)
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GravNet and Object Condensation
GravNet
• The virtual coordinate (S) is derived

from input variables with simple MLP
• Convolution using “distance” at S

(bigger convolution with nearer hits)
• Repeat 2 times and concatenate

the output with simple MLP

Object Condensation (loss function)

• Condensation point:
The hit with largest β
at each (MC) cluster

• LV: Attractive potential to
the condensation point of the same cluster
and repulsive potential to the condensation
point of different clusters

• Lβ: Pulling up β of the condensation point
• Lp: Regression to output features

(energy etc.)  currently not used

arXiv:1902.07987

arXiv:2002.03605
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• PFA is essentially a problem “to subtract hits from tracks”
• HGCAL algorithm does not utilize track information

– Only calorimeter clustering exists
• Putting tracks as “virtual hits”

– Located at entry point of calorimeter
– Having “track” flag (1=track, 0=hit)
– Energy deposit = 0

• Modification on object condensation to
forcibly treat tracks as condensation points (details next page)
– Also modifying clustering algorithm to avoid double-track clusters

What we implemented: track-cluster matching

Current number of 
parameters: ~420K
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Object condensation and our implementation

• Condensation point: The hit with largest β at each (MC) cluster
 For each MC cluster having a track,
the track is forcibly the condensation point regardless of β 

• LV: Attractive potential to the condensation point of the same cluster
and repulsive potential to the condensation point of different clusters
(no modification)

• Lβ: Pulling up β of the condensation point (up to 1)
(no modification, but β of tracks become spontaneously close to 1)

• Lp: Regression to output features (energy etc.)  currently not used

Object condensation loss function (the function to minimize)
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• ILD full simulation with SiW-ECAL and AHCAL
– ECAL: 5 x 5 mm2, 30 layers, HCAL: 30 x 30 mm2, 48 layers
– Taus overlayed with random direction

• 100k events, 10 GeV x 10 taus / event  1 million taus
• 1M events with variable energies produced, to be tested

– qq (q=u, d, s) sample at 91 GeV
• ~75k events 
• Official sample for PFA calibration (other energies available)

– Converted to awkward array stored in HDF5 format
• A few 10 GB each

Our samples for performance evaluation

Taus: good mixture
of hadrons, leptons
and photons
with some isolation
Good for training
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Event display – looks working
10 Taus @ 10 GeV each

Real 3D coordinate Output from GNN
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• Make 1-by-1 connection of MC and reconstructed cluster
– Reconstructed cluster with highest fraction of hits from the MC taken
– Multiple reconstructed cluster may connect to one MC cluster

• The other way does not occur

• Define 3 variables for each MC cluster
– Edep: total energy deposit of MC cluster
– Edep_reco: total energy deposit of matched reconstructed cluster
– Edep_match: total energy deposit of matched reconstructed cluster

included in the MC cluster
• Efficiency: edep_match / edep
• Purity: edep_match / edep_reco

Quantitative evaluation

All results from next page
are preliminary
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Efficiency & purity for GNN, tau train/tau pred
Electrons, > 1 GeV Pions, > 1 GeV Photons, > 1 GeV

Efficiency:
>90% for all particles
slightly low in pions

Purity:
>85% for all tracks
78% for photons
 merged photons?

Reasonably well
reconstructed!

Preliminary
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Efficiency & purity for GNN, tau train/qq pred
Electrons, > 1 GeV Pions, > 1 GeV Photons, > 1 GeV

Efficiency:
>88% for all particles
slightly worse than taus

Purity:
Slightly worse in pions
Significantly worse in
electrons/photons

Preliminary
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Efficiency & purity for GNN, qq train/qq pred
Electrons, > 1 GeV Pions, > 1 GeV Photons, > 1 GeV

Efficiency:
Similar to tau training
Strong to different
type of events

Purity:
Slightly better than
tau training

Preliminary
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Efficiency & purity with Pandora, ntau events
Electrons, > 1 GeV Pions, > 1 GeV Photons, > 1 GeV

Efficiency and purity
for pion is similar to GNN

Pandora is still better
in photon reconstruction
(esp. in purity)

Preliminary
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Efficiency & purity with Pandora, qq events
Electrons, > 1 GeV Pions, > 1 GeV Photons, > 1 GeV

Similar performance
with GNN method
obtained

Inconsistency with
analysis using
MC-cluster matching
implemented in
official software (ILCSoft)

Need to check definition
of MC particles/tracks

Preliminary
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Comparison of results (> 1 GeV)
Algorithm
train/test

Electron eff. Pion eff. Photon eff. Electron pur. Pion pur. Photon pur.

GravNet
10 taus/10 taus

99.2% 92.5% 97.8% 87.6% 94.5% 78.0%

GravNet
10 taus/jets

91.3% 88.1% 89.8% 62.2% 81.3% 64.4%

GravNet
jets/jets

90.5% 89.7% 87.1% 65.6% 83.3% 70.9%

PandoraPFA
10 taus

99.3% 94.0% 99.1% 91.8% 94.6% 97.2%

PandoraPFA
jets

80.2% 90.4% 79.0% 75.0% 90.6% 77.7%

PandoraPFA
jets (ILCSoft)

96.7% 95.5% 96.4% 97.1% 90.4% 97.7%

Preliminary

Still too early to conclude, but performance of GNN comparable to PandoraPFA
at least on pions, which have less uncertainty related to MC truth definitions
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• Optimizing network/input
– Improving MC truth matching (kink tracks, photon emissions from tracks etc.) 
– Output dimension for clustering: currently 2, may be higher
– Dependence on input sample size

• Also number of parameters of the network
– Other hyperparameters like learning rate etc.
– Training with mixture of taus/jets?

• Clustering method: also a place to use NN
– Currently applying simple clustering to collect hits around high-beta hits

• Performance study on jet energy resolution (target)
• Utilization of timing information
• Another NN: transformer (next page)

Plans for further development
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Network Architecture

More NLP-like model: transformer

Planned structure for PFA
Transformer

Transformer

Transformer: training relation among
elements (hits in PFA) with 
(multi-head) self-attention mechanism
 (used in GPT etc.)
   Encoder: accumulate info of
   all hits/tracks by transformer
   Decoder:
   Input cluster info one by one
   Output info of next cluster
   (training) MC truth clusters
   (inference) just provide <bos>
   to derive first cluster, using
   output as next input
   until <eos> obtained
   (Inspired by translation NN)
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Advertisements

LCWS 2024 indico: https://agenda.linearcollider.org/e/lcws2024

LCWS2024 @ U. Tokyo

Registration deadline (early):
 31st May 2024
Registration deadline (final):
 30th June 2024
Workshop days:
 8-11th July 2024

https://agenda.linearcollider.org/e/lcws2024
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• DNN-based PFA is important for further development
– For improving performance
– For detector design/optimization (eg. Timing)

• First implementation of track-cluster matching on
GravNet/object condensation done/tested
– Comparable performance to PandoraPFA (under investigation)
– Still initial stage of optimization – having much hope!
– Another methodology (transformer) being tried as well

• (additional) AI/ML should also be good for design/produce/test 
calorimeters, but need innovative ideas

Summary
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Efficiency & purity with Pandora, ntau events
Electrons, > 1 GeV Pions, > 1 GeV Photons, > 1 GeV

Slightly different algorithm
for calculations of
efficiency/purity
(to be investigated:
efficiency can be
overestimated)

Pandora seems still better

ILCSoft matching
difference 

to be investigated
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Efficiency & purity with Pandora, qq events
Electrons, > 1 GeV Pions, > 1 GeV Photons, > 1 GeV

Slightly different algorithm
for calculations of
efficiency/purity
(to be investigated:
efficiency can be
overestimated

Pandora seems still better

ILCSoft matching
difference 

to be investigated
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