This work was supported by U.S. – Japan Science Cooperation Program in High Energy Physics.

Development of High-Granularity Dual-Readout Calorimetry with psec Timing

Taiki Kamiyama^A, J. Freeman^B, C. Gatto^C, D. Jeans^D, W. Li^A, S. Los^B, K. Matsuoka^D, H. Ogawa^A, W. Ootani^A, T. Suehara^A, T. Takeshita^E

^AICEPP, the Univ. of Tokyo, ^BFNAL, ^CNIU, ^DKEK, ^EDept. of Phys., Shinshyu Univ

Outline

- Performance Evaluation by Simulation
- Scintillation Detector Development
- Cherenkov Detector Development
- Summary and Prospect

High-Granularity

Highly Granular calorimeter

Particle Flow Algorithm

- High granularity for identifying particles and their track to execute Particle Flow Algorithm (PFA).
- Measurement with best suited detectors depending on particle types.

- Improvement of particle identification by time of flight (TOF).
- Reduction of background.

• Improvement of PFA.

https://cds.cern.ch/record/2717327

To improve energy resolution of hadronic shower with Scintillation detector & Cherenkov detector.

$$\begin{cases} S = E \cdot \left[f_{\text{em}} + \left(\frac{h}{e} \right)_{s} \left(1 - f_{\text{em}} \right) \right] \\ C = E \cdot \left[f_{\text{em}} + \left(\frac{h}{e} \right)_{c} \left(1 - f_{\text{em}} \right) \right] \end{cases} \qquad E = \frac{S - \chi C}{1 - \chi} \left(\chi = \frac{1 - \left(\frac{h}{e} \right)_{s}}{1 - \left(\frac{h}{e} \right)_{c}} \right)$$

- $\left(\frac{h}{e}\right)_{S}$, $\left(\frac{h}{e}\right)_{C}$: Conversion efficiency of Non-EM signals to EM signals (independent with energy and particle type).
- E: Initial particle energy.
- $f_{\rm em}$: Energy ratio of EM component to E.

Overall design and research items

Performance Evaluation by Simulation

Studying dual-readout performance for single π^- energy resolution with this setup (not including psec Timing). (Use DD4hep and its interface to Geant4 to describe geometry, materials)

Reference Setup (CALICE AHCAL-like tiles)

Comparison with different configurations

The same total thickness of each material.

Changing the sampling fineness and which S & C are in pairs or not.

CALOR2024 | Taiki Kamiyama

Cu

Polystyrene

Quartz

Discussion

Better Dual-Readout performance with higher correlation between Scintillator signals and Cherenkov signals.

CALOR2024 | Taiki Kamiyama

Scintillation Detector Development

(Poster by H. Ogawa)

Requirement

High- granularity

Concept

Effective High-Granularity (30×30 mm²) reducing readout channels.

- Optimization of the strip design.
- Checking the light yield and uniformity with position scan using Sr90 beta-ray.

Cherenkov Detector Development (Poster by W. Li)

Requirements

High-granularity & psec timing

Concept

Cherenkov signal observed with a prototype.

Preliminary timing performance in a cosmic-ray test.

- QE of CsI photocathode seems lower than expected.
- 10 p.e.s required for time resolution of 30 ps.

Overall Time Resolution

3. Summary and Prospect

Developing High-Granularity Dual-Readout Calorimetry with psec Timing.

Beam test with combined prototype at KEK or Fermilab.

Backup

Dual-Readout

Dual-Readout analysis

 π^{-} 60 GeV (S, C) distribution

Concept of a new calorimeter

Simulation

Simulation setup

Launch single 1000 events of e^- , π^- with 30, 40, 50, 60, 100, 150 GeV into the center of the detector.

Scintillator signals

- Use p.e. assuming MPPC linear response.
- #p.e. = 0.0005 / MIP (3 mm thick) *

Digitized detected Cherenkov photons

• Mean:
$$\widehat{N}_{det} = \Delta l \cdot \int_{\lambda_{\min}}^{\lambda_{\max}} \frac{2\pi Z^2 \alpha}{\lambda^2} \left(1 - \frac{1}{n^2(\lambda)\beta^2}\right) \cdot QE(\lambda) d\lambda$$

• Digitized: $N_{det} = gRandom \rightarrow Poisson(\hat{N}_{det})$

N: the number of Cherenkov photons *x*: particle path length

- λ : wavelength of Cherenkov photons
- α : Fine-structure constant
- Z: charge

CALOR2024 | Taiki Kamiyama

28

• NIFS-V made from NIKON.

https://www.nikon.com/business/components/assets/pdf/sio2-e.pdf

Impurities

OH	< 100 ppm	Al	< 0.2 ppb
Li	< 0.2 ppb	Ti	< 0.2 ppb
Na	< 0.2 ppb	Cr	< 0.2 ppb
K	< 0.2 ppb	Fe	< 0.2 ppb
Mg	< 0.2 ppb	Cu	< 0.2 ppb
Ca	< 0.2 ppb		

• Refractive index

$$n^{2}-1 = \frac{P_{1}\lambda^{2}}{\lambda^{2}-Q_{1}} + \frac{P_{2}\lambda^{2}}{\lambda^{2}-Q_{2}} + \frac{P_{3}\lambda^{2}}{\lambda^{2}-Q_{3}} + \frac{P_{4}\lambda^{2}}{\lambda^{2}-Q_{4}}$$

Dispersion Coefficients *7			
P1	6.40349086E-01		
P ₂	3.74308316E-01		
Pз	8.97505390E-02		
P4	9.08924481E-01		
Q1	4.25379400E-03		
Q2	1.27798420E-02		
Q₃	1.40044370E-02		
Q4	9.93231891E+01		

• Checking refractive index

• Internal transmittance.

$$T[\%] = 0 \ (\lambda < 150 \text{ nm} = \lambda_{\min})$$

$$T[\%] = 10 \ (\lambda - 150 \text{ nm}) \ (\lambda < 160 \text{ nm})$$

$$T[\%] = 100 \ (\lambda \ge 160 \text{ nm})$$

https://www.nikon.com/business/components/assets/pdf/sio2-e.pdf

Wavelength[nm]

Thickness:10 mm

- CsI photocathode
 - Assume ~ 10 %.

•
$$\lambda < 200 \text{ nm} = \lambda_{\text{max}}$$
.

https://www.hamamatsu.com/content/dam/hamamatsuphotonics/sites/documents/99_SALES_LIBRARY/etd/PMT_handbook_v4J.pdf

図 4-2(b) 透過型各種光電面分光感度特性

Calibration with EM component

• Showers caused by e^- has only EM components.

(Output signals) = $k \cdot$ (Initial particle energy)

• Using this k, reconstructing initial hadron energy from output hadron signals.

(Reconstructed hadron energy) = $\frac{1}{k}$ (Output hadron signals)

χ estimation

Using initial particle energy and solving $\chi = (S - E)/(C - E).$ (use most probable value) piminus 60 GeV χ distribution

Scintillator strip

Strip and SiPM

- Scintillator
 - ELJEN EJ200, EJ232
 - 295mm×30mm×3mm
- SiPM
 - MPPC S13360-2050VE

Analysis method

 $Light Yied = \frac{(charge of scintillation)}{gain}$

Sum light yield = (Ch1 light yield) + (Ch2 light yield)

Geometric mean lingt yield = $\sqrt{(Ch1 \text{ light yield}) \times (Ch2 \text{ light yield})}$

Why a geometrical mean?

• For uniformly reconstructing light yield.

Attenuation length: λ

Single readout (EJ200 & EJ232)

EJ200 single light yield

Double readout (EJ200)

ch1 and ch2 sum

Ch2 light yield

ch1 and ch2 geometric mean

Xaxis [mm]

Double readout (EJ232)

LY [p.e.]

LY [p.e.]

18

14

12

Side readout (EJ200)

Side readout (EJ232)

DLC-RPC Cherenkov detector

Experimental setup

