A Novel Proof of Concept of Innovative Calorimetry for Particle Discrimination and Energy Deposition through Crystal Stack Analysis

#### - Devanshi Arora, CERN & Shizuoka Univeristy, Japan

M. Salomoni, Y. Haddad, I. Frank, L. Martinazzoli, V. Zabloudil, M. Doser, E. Auffray ;CERN ; M. Owari; Shizuoka Univeristy, Japan

**CALOR 2024**, the 20th International Conference on Calorimetry in Particle Physics 20-24th May, 2024





# Index

- Introduction
- Geant4 Simulation Results
- Experimental Details and Results
  - Introduction
  - Methods and Materials
  - Analysis Results
- Conclusion and Future Plan





# Introduction





# QUANTUM DOTS : FROM BULK MATERIAL TO NANOCOMPOSITE



characteristics

chromatic tunability/ tunable emission and absorption motive? to achieve fast and tunable calorimeters which is why we explore the characteristics of fast timing and tunable emission of QDs





# PEROVSKITES SCINTILLATING NANOCOMPOSITE

### **Tunable emission**

# Nanocrystals in solution

Increase of Pb %



### Polymerisation



Courtesy J. Kral, CTU, Prague

#### Nanocrystals embedded in polymer













# QUANTUM DOTS: CHROMATIC CALORIMETRY

• idea: seed different parts of a "crystal" with nano composite scintillators emitting at different wavelengths, such that the wavelength of a stimulated fluorescence photon is <u>uniquely</u> assignable to a specific position







# QUANTUM DOTS: CHROMATIC CALORIMETRY

• idea: seed different parts of a "crystal" with nano composite scintillators emitting at different wavelengths, such that the wavelength of a stimulated fluorescence photon is <u>uniquely</u> assignable to a specific position

### requires:

- narrowband emission (~20nm)
- only absorption at shorter wavelengths
- short rise/decay times

chromatic tunability optimizes for quantum efficiency of PD (fast, optimizable WLS)





# CHROMATIC CALORIMETRY: BASIC PRINCIPLE

**concept:** using different scintillating materials along the scintillator module to follow the shower propagation and a detector capable of discriminating different emission  $\lambda$ .

Absorption and emission of the "crystal" stack have to be <u>one directional transparent</u>.







# CHROMATIC CALORIMETRY: BASIC PRINCIPLE

**concept:** using different scintillating materials along the scintillator module to follow the shower propagation and a detector capable of discriminating different emission  $\lambda$ .

Absorption and emission of the "crystal" stack have to be <u>one directional transparent</u>.

leftmost scint. material : absorb wavelengths < 650 nm emit at > 680 nm next band : absorb wavelengths < 590 nm emit at > 590 nm rightmost scint. material : absorb wavelengths < 410 nm emit at > 420 nm

Doser M, Auffray E, et. al (2022) Front. Phys. 10:887738









courtesy Y. Haddad, N U, Boston, USA (based on data from: Zheng, W. et al, Nat Commun 9, 3462 (2018))





# Geant4 Simulation



To understand QDs embedded in the chromocalo module, we performed simulations as a supportive idea of this theory



# ADVENT OF CHROMATIC CALORIMETRY



courtesy Y. Haddad, N U, Boston, USA (based on data from: Zheng, W. et al, Nat Commun 9, 3462 (2018))





First layer: QDs absorb wavelengths <650nm emit at 670nm next layer: QDs absorb wavelengths <520nm emit at 530 nm

• Last layer: QDs absorb wavelengths <410nm emit at 420 nm



# CHROMATIC CALORIMETRY: TWO OPTIONS



- combining inorganic and organic scintillators.
  - Working with specialized labs to develop suitable inorganic crystals for direct embedding.
- and light yield in various combinations.

courtsey Y. Haddad, N U, Boston, USA



#### • Two Design Approaches: Exploring direct embedding of quantum dots in high-Z materials and a hybrid design

• Hybrid Design Feasibility: Utilising organic scintillators like nanocomposite scintillators (nano scintillators embedded in a host polymer matrix) or like PbF2 as absorber -no emission, transparent than PWO, no scintillation-ideal case) • Key Parameter Determination: Assessing quantum dot concentration, transparency, radiation hardness, time response,







# CHROMATIC CALORIMETRY: SIMULATION



courtsey Y. Haddad, N U, Boston, USA









# CHROMATIC CALORIMETRY: SIMULATION

reconstruction of energy is possible, as energy increases-shower moves inside the calo module, reconstruction of energy using chromatic info is proven







# CHROMATIC CALORIMETRY: PROOF OF CONCEPT, TEST-BEAM 2023

- seeding/embedding of QDs in the calo module is not feasible at the moment
- the first iteration of chromo calo, validating the relevance of this method
- utilizing standard inorganic bulk scintillating materials having different emission spectra, and PWO was chosen as an absorber although it is not ideally transparent





photon transmission throughout the stack.

# CHROMATIC CALORIMETRY: TEST BEAM 2023

The crystal stack was constructed using the following inorganic scintillators (the last dimension is along the longitudinal shower propagation):

2x2x2 cm\$^3\$ gadolinium aluminum gallium garnet (**GAGG**, 540 nm peak emission),

2x2x5 cm\$^3\$ and 2x2x12 cm\$^3\$ lead tungstate (**PWO, 420**) nm peak emission),

2x2x3 cm\$^3\$ bismuth germanate (**BGO, 480 nm peak** emission), and

2x2x2 cm\$^3\$ lutetium yttrium oxy orthosilicate (LYSO, 420 nm peak emission)

objective: Study of the pulse shapes obtained with the scintillator module composed of crystal stacks with different energy exposition

to determine electron-pions discrimination, longitudinal shower profile, and energy deposited in the crystal stack.

![](_page_16_Picture_8.jpeg)

![](_page_16_Figure_9.jpeg)

D.Arora, CALOR, 23 May 2024

![](_page_16_Picture_14.jpeg)

# MATERIALS: CHROMATIC CALORIMETRY: TB 2023 @ 💬 🙋

GAGG [radiation length = 1.51 cm (for 1 cm length, 1.32 X0)]

[radiation length = 1.2 cm (for 3 cm length, 2.7 X0)] BGO -> in the shower max

LYSO [radiation length = 1.1 cm (for 2 cm length, 1.8 X0)]

PWO is used for adding X0 without compromising the transparency of the crystals' emission

![](_page_17_Figure_5.jpeg)

![](_page_17_Picture_8.jpeg)

![](_page_17_Picture_11.jpeg)

### DETECTION DETAILS: CHROMATIC CALORIMETRY: TB 2023

### photodetector

Multianode PMT (MAPMT, Hamamatsu R7600-M4) from Hamamatsu Active area 18x18 milli-meter. A light mixer was used to spread the light between LYSO and the filters

![](_page_18_Picture_5.jpeg)

![](_page_18_Picture_6.jpeg)

#### **Measurements**

25-100 GeV electrons 100 GeV pions 150 GeV muons

### **SPS(north area, CERN) TB 2023**

![](_page_18_Picture_12.jpeg)

![](_page_18_Picture_15.jpeg)

# TEST-BEAM SETUP

![](_page_19_Figure_1.jpeg)

An, L. & Auffray, E. et. al (2022) Performance of a spaghetti calorimeter prototype 1045. 167629

![](_page_19_Figure_3.jpeg)

![](_page_19_Picture_4.jpeg)

two MCPs provide the time reference, two scintillating pads the trigger signal, and three DWCs the tracking information.

#### **SPS(north area, CERN) TB 2023**

![](_page_19_Picture_9.jpeg)

![](_page_19_Picture_10.jpeg)

### TESTED MODULE SIMULATION-LONGIDUTIONAL SHOWER PROFILE

![](_page_20_Figure_1.jpeg)

![](_page_20_Picture_2.jpeg)

![](_page_20_Picture_3.jpeg)

![](_page_20_Picture_6.jpeg)

### TESTED MODULE SIMULATION-LONGIDUTIONAL SHOWER PROFILE

![](_page_21_Figure_1.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_21_Figure_3.jpeg)

![](_page_21_Figure_6.jpeg)

### TESTED MODULE SIMULATION-ENERGY DEPOSITED PLOTS

![](_page_22_Figure_1.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_22_Figure_4.jpeg)

possible

the current stack is imperfect

preliminary

leak in energy dep., and mix btw crystals, next chromocalo iteration?

D.Arora, CALOR, 23 May 2024

![](_page_22_Picture_12.jpeg)

### TESTED MODULE SIMULATION: OPTICAL PHOTON ENERGY

max light is exiting from **PWO** no filters embedded btw crystals

the current crsytal stack is imperfect

mix of light btw crystals, next chromocalo iteration? better chromatic separation needed? filters in btw the crystals?

e- beam, 100 GeV

Simulation-based correlation & discrimination btw electron and pions events were also achieved.

![](_page_23_Figure_6.jpeg)

![](_page_23_Figure_7.jpeg)

D. Arora, CALOR, 23 May 2024

![](_page_23_Picture_10.jpeg)

# Analysis-experimental results

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_4.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_25_Figure_3.jpeg)

![](_page_25_Picture_4.jpeg)

### OUTPUT AMPLITUDE PLOTS AT DIFFERENT ELECTRON ENERGY

![](_page_26_Figure_1.jpeg)

![](_page_26_Figure_2.jpeg)

preliminary

![](_page_26_Picture_4.jpeg)

## ELECTRON ENERGY DISCRIMINATION PLOTS

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_27_Figure_3.jpeg)

### electron energy discrimination fro GAGG and LYSO , at 25, 50 and 100GeV e- beam

![](_page_27_Figure_5.jpeg)

D.Arora, CALOR, 23 May 2024

# ANALYTICAL DISCRIMINATION STUDY

<u>Scatter plots</u> illustrating the relationship between the signal amplitudes measured in <u>GAGG</u> and <u>LYSO</u> for electrons (e-) and positively charged pions ( $\pi$ +) at 100 GeV.

Each point represents an event, with the x-axis indicating the signal

![](_page_28_Figure_3.jpeg)

\*Only events with bin counts above 20 are displayed

![](_page_28_Picture_5.jpeg)

![](_page_28_Figure_6.jpeg)

## ANALYTICAL DISCRIMINATION STUDY

Each point represents an event, with the x-axis indicating the signal amplitude measured in GAGG and the y-axis in LYSO.

![](_page_29_Figure_3.jpeg)

\*Only events with bin counts above 20 are displayed

![](_page_29_Figure_5.jpeg)

## CONCLUSION

It was observed that exposing the stack with high-energy electrons and pions, up to 100 GeV, leads to a shift in the output amplitude of GAGG, PWO, BGO, and LYSO. This shift allowed to discriminate electrons from pions with approximately 86% accuracy

![](_page_30_Picture_2.jpeg)

![](_page_30_Picture_5.jpeg)

## CONCLUSION

It was observed that exposing the stack with high-energy electrons and pions, up to 100 GeV, leads to a shift in the output amplitude of GAGG, PWO, BGO, and LYSO. This shift allowed to discriminate electrons from pions with approximately 86% accuracy

G4 simulation and test beam results are complementary in terms of correlationdiscrimination btw electrons and pions events

This novel proof-of-concept - validates the relevance and hence potential of chromatic calorimetry

The obtained results demonstrate how a simple stack of different inorganic scintillators can discriminate between electrons and pions of the same energy, owing to the distinct energy deposition profiles of these two particles.

![](_page_31_Picture_5.jpeg)

![](_page_31_Figure_6.jpeg)

D. Arora, CALOR, 23 May 2024

## FUTURE PLANS

However, downstream absorption and upstream emission not well defined, resulting in the loss of chromatic information

| use of <u>PbF2</u> ins<br>it is ideally tranunderstand be<br>propagation | stead of PWO as<br>nsparent,hence to<br>tter shower                                                                              |  |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                          | <b>Two plastic scintillators</b> EJ262<br>and 228 will be used because of<br>their narrower emission<br>compared to BGO and LYSO |  |

next iteration of chromo calo - we aim to study shower shape reconstruction, relationship betweek I.E and R.E

nanomaterial development - seeding stack with nanocomposite scinitillators (potential goal)

great progress-Nanoscintillator developments in Crystal Clear Colab.-ECFA DRD5 future collaboration

![](_page_32_Picture_7.jpeg)

### 2024 Test-Beam: aim to get better chromatic separation between layers

![](_page_32_Figure_9.jpeg)

### **SPS(north area, cern) TB 2024**

![](_page_32_Picture_13.jpeg)

![](_page_32_Picture_14.jpeg)

![](_page_32_Figure_15.jpeg)

![](_page_32_Figure_16.jpeg)

# Thank you!

![](_page_33_Picture_2.jpeg)

# Q & A?

D.Arora, CALOR, 23 May 2024

![](_page_33_Picture_6.jpeg)

![](_page_34_Picture_1.jpeg)

# Backup

![](_page_34_Picture_5.jpeg)

### TESTED MODULE SIMULATION: OPTICAL PHOTON ENERGY

max light is exiting from **PWO** no filters embedded btw crystals

the current crsytal stack is imperfect

mix of light btw crystals, next chromocalo iteration? better chromatic separation needed? filters in btw the crystals?

e- beam, 100 GeV

Simulation-based correlation & discrimination btw electron and pions events were also achieved.

![](_page_35_Figure_6.jpeg)

![](_page_35_Figure_7.jpeg)

![](_page_35_Picture_10.jpeg)

# TESTED MODULE SIMULATION: ENERGY DEPOSITED

![](_page_36_Figure_1.jpeg)

![](_page_36_Picture_4.jpeg)

# QUANTUM DOTS: CHROMATIC TUNABILITY

![](_page_37_Picture_1.jpeg)

deposit on surface of high-Z material thin layers of UVVISWLS

embed in high-Z material ? two-species (nanodots + microcrystals) embedded in polymer matrix? quasi continuous VIS-light emitter (but what about re-absorbtion?)

![](_page_37_Picture_8.jpeg)

![](_page_37_Picture_9.jpeg)

![](_page_37_Picture_10.jpeg)

#### Quantum dots: timing

![](_page_38_Picture_1.jpeg)

Hideki Ooba, "Synthesis of Unique High Quality Fluorescence Quantum Dots for the Biochemical Measurements," AIST TODAY Vol.6, No.6 (2006) p.26-27

![](_page_38_Picture_4.jpeg)

![](_page_38_Picture_7.jpeg)

#### Quantum dots: timing

![](_page_39_Picture_1.jpeg)

Hideki Ooba, "Synthesis of Unique High Quality Fluorescence Quantum Dots for the Biochemical Measurements," AIST TODAY Vol.6, No.6 (2006) p.26-27

![](_page_39_Picture_4.jpeg)

![](_page_39_Figure_5.jpeg)

Doser M, Auffray E, et. al (2022) Front. Phys. 10:887738

![](_page_39_Picture_9.jpeg)

#### Quantum dots: timing and tunability

![](_page_40_Picture_1.jpeg)

Hideki Ooba, "Synthesis of Unique High Quality Fluorescence Quantum Dots for the Biochemical Measurements," AIST TODAY Vol.6, No.6 (2006) p.26-27

#### chromatic tunability optimizes for quantum efficiency of PD (fast, optimizable WLS)

deposit on surface of high-Z material thin layers of UVVISWLS

embed in high-Z material ? two-species (nanodots + microcrystals) embedded in polymer matrix? quasi continuous VIS-light emitter (but what about re-absorbtion?)

Doser M, Auffray E, et. al (2022) Front. Phys. 10:887738

![](_page_40_Picture_7.jpeg)

![](_page_40_Figure_8.jpeg)

![](_page_40_Picture_12.jpeg)

![](_page_40_Picture_13.jpeg)

Quantum dots: chromatic calorimetry

• idea: seed different parts of a "crystal" with nanodots emitting at different wavelengths, such that the wavelength of a stimulated fluorescence photon is <u>uniquely</u> assignable to a specific nanodot position

![](_page_41_Picture_3.jpeg)

![](_page_41_Figure_4.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_42_Figure_4.jpeg)

Quantum dots: chromatic calorimetry

 idea: seed different parts of a "crystal" with nanodots emitting at different wavelengths, such that the wavelength of a stimulated fluorescence photon is <u>uniquely</u> assignable to a specific nanodot position

#### requires:

- narrowband emission (~20nm)
- only absorption at longer wavelengths
- short rise/decay times

![](_page_43_Picture_7.jpeg)

![](_page_43_Figure_8.jpeg)

![](_page_43_Picture_11.jpeg)

### electron energy discrimination

![](_page_44_Figure_1.jpeg)

![](_page_44_Picture_2.jpeg)

![](_page_44_Figure_3.jpeg)

![](_page_44_Figure_4.jpeg)

D.Arora, CALOR, 23 May 2024

![](_page_44_Picture_7.jpeg)

![](_page_45_Figure_0.jpeg)

![](_page_45_Figure_2.jpeg)

![](_page_45_Picture_3.jpeg)

![](_page_45_Figure_4.jpeg)

D.Arora, CALOR, 23 May 2024

#### Simulation-based discrimination between electrons and pions

![](_page_46_Figure_1.jpeg)

![](_page_46_Picture_3.jpeg)

![](_page_46_Picture_6.jpeg)

#### **Output channels amp\_o/p at different energies**

![](_page_47_Figure_1.jpeg)

![](_page_47_Picture_3.jpeg)

![](_page_47_Figure_4.jpeg)

![](_page_47_Picture_6.jpeg)

### OUTPUT AMPLITUDE PLOTS AT DIFFERENT ELECTRON ENERGY

![](_page_48_Figure_1.jpeg)

![](_page_48_Figure_2.jpeg)

![](_page_48_Figure_3.jpeg)

D.Arora, CALOR, 23 May 2024

![](_page_48_Picture_6.jpeg)

![](_page_48_Picture_7.jpeg)

![](_page_49_Figure_0.jpeg)

#### Decay time kinetics at (e- ,100GeV)

![](_page_50_Figure_1.jpeg)

![](_page_50_Picture_2.jpeg)

| Crystals | Decay time [ns]                 | Decay time [ns]           |
|----------|---------------------------------|---------------------------|
|          | *from previous paper (expected) | *ChromoCalo<br>experiment |
| LYSO     | 38-44                           |                           |
| BGO      | 125-130                         |                           |
| GAGG     | 50-150                          |                           |

![](_page_50_Picture_5.jpeg)

![](_page_51_Figure_0.jpeg)

![](_page_51_Figure_1.jpeg)

![](_page_51_Picture_2.jpeg)