

CALICO

Pattern recognition at CEPC AHCAL prototype using beam test data at CERN

Xin Xia on behalf of CEPC calorimeter team and CALICE collaboration Institute of High Energy Physics, Chinese Academy of Sciences University of Chinese Academy of Sciences

Introduction

An analog hadronic calorimeter (AHCAL) prototype developed for the CEPC

- > Absorber: stainless steel; sensitive material: plastic scintillator
- \succ Transverse: 72 × 72 cm²; granularity: 4 × 4 cm²; 40 sampling layers
- \geq 12960 channels; 5 tons; developed in 2018-2022

Successful beam test campaigns and decent statistics of beam test data samples collection

- Conducted at CERN (SPS-H2, SPS-H8, PS-T9) during 2022-2023
- > muons: 10/120 GeV; electrons/positrons: 0.5 5 GeV, 10 250 GeV; pions: 1 350 GeV

Beam purity issue: observed beam contamination

> Particle identification technique developed: to select high-purity data sample

PID technique based on Fractal Dimension

Particle Identification (PID) method:

- Fractal Dimension (FD):
- $FD = \left\langle \frac{log(R_{\alpha,1})}{log(\alpha)} \right\rangle + 1$, where $R_{\alpha,1} = \frac{N_1}{N_{\alpha}}$ and N_{α} is number of hits scaled by the factor α
- Self-similarity in patterns of showers in transverse plane lacksquare
- Utilize the high granularity characteristic of calorimeter and \bullet sensitive to the nature of particle and the type of interaction
- \blacktriangleright Average Hit Energy: $\langle E_{Hit} \rangle = E_{sum} / N_{Hits}$

PID studies with beam test data

Characteristics of different beam particles

> Imaging capability of high granularity calorimeter

- \succ Pion beam: purity improves with energy
 - When energy > 30 GeV, purity > 80%
- > Noise events become a dominating factor

PID performance:

> Efficiency and purity better than 97% and can achieve 99.7% Improve with larger energy and enter in plateau from 30 GeV

Conclusions

- > An AHCAL prototype developed and successful beam test at CERN
- > Develop a new PID technique based on fractal dimension, efficiency

and purity are better than 97%

Comprehensive beam purity analysis, SPS-H2 beam purity > 80% for electron and pion beams > 30 GeV

Acknowledgement

This work was received funding from the EURO-LABS. We also acknowledge the support received from the CERN facility and the CALICE collaboration which made these measurements possible.