An overview of the CMS High Granularity Calorimeter, and the engineering challenges in its construction

T. French (CERN) on behalf of the CMS HGCAL collaboration

CALOR 2024, 24th May 2024, Tsukuba

An overview of HGCAL

T. French / CALOR2024 / Tsukuba / 24th May 2024

Physics Case

- High luminosity LHC (HL-LHC) physics programme:
 - Detailed studies of the Higgs boson and SM processes.
 - Trigger cleanly on and reconstruct the narrow vector boson fusion (VBF) jets, as well as merged jets for physics beyond the SM.
- Integrating 10x more luminosity (3000 fb⁻¹) than the LHC.
 - Challenges for radiation tolerance and event pileup, especially for calorimetry in the forward region.
- Performance degradation of the existing PbWO₄-based electromagnetic calorimeter (EE) and the plastic scintillator-based hadron calorimeter (HE), which were designed for an integrated luminosity of 500 fb⁻¹.
- Two high granularity calorimeters (HGCAL) will replace the existing endcap calorimeters, for installation in Long Shutdown 3 (LS3, nominally 2026-2028).

Proposed Detector – HGCAL

- HGCAL needs to <u>fit in the envelope of the previous calorimeters (EE and HE)</u> and provide high granularity, radiation-tolerance (2 MGy), and efficient readout.
- Each HGCAL is 5.4 m in diameter and weighs about 230 tonnes.
- The electromagnetic part (CE-E) is designed with fine longitudinal resolution, and thin absorber layers of lead and CuW/copper between the active layers.
- The hadronic part (CE-H) has thick stainless-steel absorbers between sensors.
- Active sensors cover ~1000 m² total over both endcaps.
 - Silicon sensors as active material in the front sections.
 - Plastic scintillator tiles, read out by SiPMs, in lower radiation regions.
- Challenges:

This presentation 👞

- Engineering (electronics, mechanical, and thermal).
- Data transmission, and level-1 (L1) trigger formation.
 - See presentations by Aidan Grummer (front-end electronics and readout) and Stavros Mallios (back-end electronics).
 Andre Stahl will be presenting reconstruction and performance.

CMS Phase2 pp 7TeV FLUKA v6.3.0.1:

		Both Endcaps	Silicon	Scintillator
		Area	~620 m ²	~370 m ²
		Channel Size	0.5 – 1.2 cm ²	4 – 30 cm ²
		# Channels	~6M	~280k
ator	-	# Modules	~26k	~4k
	Ī	Op. Temp.	-35 °C	-35 °C
		Per Endcap	CE-E	CE-H Si Si+Scint.
		Per Endcap Absorber	CE-E Pb, CuW, Cu	Si CE-H Si+Scint.
		Per Endcap Absorber Depth	CE-E Pb, CuW, Cu 27.7 X ₀	CE-H Si+Scint. SS, Cu 10 λ
		Per Endcap Absorber Depth Layers	CE-E Pb, CuW, Cu 27.7 X ₀ 26	Si CE-H Si+Scint. SS, Cu 10 λ 7 14
		Per Endcap Absorber Depth Layers Weight	CE-E Pb, CuW, Cu 27.7 X ₀ 26 23 t	Si CE-H Si+Scint. SS, Cu 10 λ 7 14 205 t 14

Beamline

HGCAL cross-section (~axisymmetric)

Silicon

CE-E

Scintill

CE-H

Modules, Tileboards

- 26,000 hexagonal silicon modules: ٠
 - Glued stack of baseplate, silicon sensor and readout hexaboard. Electrical connections to sensors • are made via wire-bonding. A zoo of partial modules is created to fill gaps.
 - High density modules (HD, with 444 x 0.5 cm² hexagonal cells) are used in high fluence regions, . low density modules (LD, 198 x 1.2 cm² cells) elsewhere.
 - Baseplates are CuW in CE-E, contributing to the absorber material, and carbon fibre in CE-H. .
- 280,000 scintillator tiles: ۰
 - Cast (70%) and injection-moulded (30%) plastic tiles (4-30 cm²), wrapped in reflective foil. •
 - Read-out by silicon photomultipliers (SiPM) which form a tileboard. •

Injection moulded tile

top of SiPMs

Scintillator tileboard under test (DESY)

T. French / CALOR2024 / Tsukuba / 24th May 2024

See SiPM-on-tile poster by A. Laudrain

5

Cassettes

T. French / CALOR2024 /

Tsukuba / 24th May 2024

- Modules and tileboards are mounted onto copper cooling plates = "cassettes".
- Cassettes are instrumented with electronics including motherboards, concentrators, and DCDC converters, in addition to services and connectors. These all must fit in a 5.1 mm gap above the modules.
- 60° CE-E cassettes have modules on both sides of the cooling plate, and the 30° CE-H cassettes are single-sided and exist in both all-silicon and mixed (scintillator and silicon sensor) types.

Deported DCDC-Mezzanine gap: 5.1mm Sensor Kapton Base Plate Colored Concentrator Mezzanine DCDC-Mezzanine Pb HexBoard Cooling HGCROC Cassette cross-section

HGCAL Engineering Challenges

Detector Support Structure

- To hold the 230 tonne, 5.4 m diameter detector onto ٠ the CMS endcap:
 - **18 supports**, bridging gap where muon chambers • (ME0) are installed, and leaving access to them.
 - Most of weight taken on 3 and 9 o'clock positions. •
 - Wedges above and below these are **articulated** to • avoid shear load.
 - Remaining wedges support the moment load, while • allowing 2.5 mm radial thermal contraction.
- Supporting detector self-weight (absorbers, cassettes • and CE-E) through stainless-steel inner cylindrical supports, and tie rods + super-bolts.
- The machined Al-alloy CE-E support cylinder holds • the CE-E cassettes and lead absorber plates.

Intermediate Ti support

CE-H support cylinder & split rings prototype

Stainless-Steel Absorbers

- 40 thick absorber plates (42-95 mm), each weighing up to 10 tonnes.
- Key challenges:
 - Tight 0.5 mm tolerance on thickness (for physics).
 - Tight 1.0 mm tolerance on flatness and 0.1-0.2 mm on positions (for alignment).
 - Milling releases stress with each cutting operation, which can result in significant bending. Each plate is flipped multiple times on a large vertical lathe.
 - Full machining (3 steps) takes about 3-4 weeks per disc (2 shifts, 7/7 days).
 - Sourcing SS304L material with **low magnetic permeability** which required an alloy with tight tolerance on chemical composition.
 - Calculations allowed μ_{max} = 1.05, up to 100 tonnes additional axial force from CMS 4T magnetic field.
 - Actual plates measured with a mean μ of 1.017 \rightarrow 31.5 tonnes.
 - Shipping of the bulky objects via road and sea transport is quite a feat!
 - Raw material from France to Pakistan, and finished products returning.
 - 6-8 weeks shipping in each direction.

16m vertical boring and turn mill (3axis CNC) at PAEC in Pakistan

12m milling machine (4-axis CNC)

Disc facing on vertical lathe

CE-H absorber disc in 3 parts

Cassette cooling plates

- ≈6 mm thick copper plates support, align and cool the modules.
 - Each bare plate weighs about 60 kg in the CE-E.
- Key challenges:
 - Avoiding over-constraining a system which will **shrink thermally and undergo multidirectional loading** during assembly and after rotation.
 - Adding stainless-steel mounting hardware is needed to locally strengthen the copper plates.
 - **Machining** of thousands of plain and threaded holes, outer profiles, cooling pipe groove and overall plate surface with high precision (0.1-0.2 mm).
 - Cooling pipe insertion (coating, bending, soldering).
 - Pipe plated with nickel then copper to improve wettability.
 - Ensuring good thermal contact and avoiding bowing of plates requires a heated table and careful manipulation.
 - Vacuum handling tooling developed to move plates.

CE-E copper plate prototype with embedded cooling pipe

Copper plate vacuum manipulation tool at LLR

Detector Handling

- The CE-H mechanical structure will be machined and assembled first in Pakistan for testing, disassembled, shipped, then reassembled at CERN for the final detector construction.
- Key challenges:
 - Large weight with limited area for supports detector will be fastened by screws and held using hydraulic pistons.
 - Tooling to be used to remove the existing forward calorimeters from the cavern and reused for handling/rotating/installing HGCAL.
 - Lowering the detector down CMS shafts, 100 m deep, will require specialist cranes (hired by the day).

CE-H mechanics assembly in Pakistan – high rotating table

CE-H mechanics assembly at CERN – lower assembly table

Full detector rotation using support cradle prior to lowering via strandjacking

Cooling

- Operation at -35 °C using two-phase CO₂.
 - To reliably operate silicon sensors after irradiation, and to keep low the electronics noise that results from the increased leakage current and decreased charge collection efficiency after irradiation.
 - To keep the radiation-induced SiPM electronics noise sufficiently low.
- Key challenges:
 - Ensuring system functions correctly (temperature, pressure drops and vapour quality) with a **total power estimate of 130 kW** per endcap.
 - Flexible coaxial, vacuum-jacketed transfer lines through moving cable chains (~100 lifetime open/close cycles), optimising pressure drops.
 - Reducing the number of welds via custom manifolds and fittings saving ~2500 welds per endcap compared to the original design (5000+).

50 mm OD, 17 m long coaxial hose

On-detector manifold optimisation: reduced number of welds

(KIT proposal)

On-detector manifolds in CAD

T. French / CALOR2024 / Tsukuba / 24th May 2024

Thermal Insulation

- The "thermal screen" prevents condensation and ice formation inside the HGCAL detector, and condensation on its own outer surface.
- Key challenges:
 - Complex shape driven by detector geometry and envelope. •
 - **Sealed** (for dry gas flushing) while still allowing services access. •
 - **Robust** people can stand on it, and it protects the detector from • minor impacts.
 - Low mass (to minimise particle interactions). •
 - Radiation and magnetic-field tolerant. .

T. French / CALOR2024 /

Tsukuba / 24th May 2024

- Thickness: 20 to 30 mm in most places means passive insulation • is not enough.
- General design:
 - Strong, insulating layer wrapping around whole detector. •
 - Bonded composite sandwich construction (CFRP, aramid • honeycomb, aluminium alloy).
 - Polyimide heating foils control the external surface temperature • near to ambient.

Outer panel exploded view

Thermal screen overview

icone Foar Seal Strip

Services

- Huge number of services to integrate across 2 detectors:
 - 50,000+ individual wires inside the cassettes, 5,500 optical connectors.
 - 10,800+ cables inside the 2 detectors (excluding cassettes), 20 km in total.
 - 4,600+ cables outside the detector connecting to power supplies and readout racks, totalling 150 km.
 - Dozens of pipes for cooling, dry gas, fire detection, tray water-cooling.
- Key challenges:
 - The services volume inside the envelope fixed the outer limits of the absorber.
 - All outside services need to fit in the space left by removing HE and EE services.
 - Inventive cable routing solutions required, finding space outside of the existing service trays.
- Mockups and prototyping are vital!

External services mockup on CMS endcap

20° mixed cassette mechanical mockup

CE-E cassette 3D model and mechanical mockup with wires

Internal services mockup

Summary

- HGCAL will be the first large scale calorimeter with Si and SiPM-on-tile technologies providing unprecedented granularity and time resolution.
- Designs are now becoming reality production is in full swing on almost all components from modules to mechanics.
- A huge amount of work has enabled us to address numerous engineering challenges.
- Assembly of detector structures (cassettes and mechanics) is starting this year.
- Installation of the first endcap is planned for LS3.

Animation

CMS HGCAL 'High Granularity Calorimeter'

* Note – the video is a schematic illustration of the detector ingredients and their integration, not an accurate depiction of the assembly processes

Animated by Karol Rapacz

https://youtu.be/5EKumUsYinM

(8:15)

