Higgs interference effects in top-quark pair production in the 1HSM

Alexander Lind

with Andrea Banfi, Nikolas Kauer, Jonas Lindert, and Ryan Wood

2309.16759 [hep-ph]

LHC Higgs Working Group WG3 (BSM) – Extended Higgs Sector subgroup meeting 31 October 2023

Process of interest

 $pp (\rightarrow \{h_1, h_2\}) \rightarrow t\bar{t} + X$ Leading-order contributions:

Alexander Lind

Extended Higgs Sector subgroup meeting

The 1-Higgs Singlet Model

Add a real singlet scalar field

Potential after symmetry breaking: $V = \lambda \left(\phi^{\dagger} \phi - \frac{v^2}{2} \right)^2 + \frac{1}{2} M^2 s^2 + \lambda_1 s^4 + \lambda_2 s^2 \left(\phi^{\dagger} \phi - \frac{v^2}{2} \right) + \mu_1 s^3 + \mu_2 s \left(\phi^{\dagger} \phi - \frac{v^2}{2} \right)$

Mixing: $h_1 = H \cos \theta - s \sin \theta$ $h_2 = H \sin \theta + s \cos \theta$

Fixed parameters: $M_{h_1} = 125$ Ge

125 GeV,
$$\mu_1 = \lambda_1 = \lambda_2 = 0$$

Free parameters: M_{h_2} , θ , with 8 benchmark points:

M_{h_2} [GeV]	700	1000	1500	3000
$\theta = \theta_{1}$	$\pi/15$	$\pi/15$	$\pi/22$	$\pi/45$
$v = v_1$	pprox 0.21	pprox 0.21	≈ 0.14	pprox 0.07
$\theta = \theta_{0}$	$\pi/8$	$\pi/8$	$\pi/12$	$\pi/24$
$v = v_2$	≈ 0.39	≈ 0.39	pprox 0.26	pprox 0.13

NLO particularly important for Higgs production

 $\sigma_{\text{LO}}(pp \rightarrow H + X) = 14.541(7) \text{ pb}$ $\sigma_{\text{NLO}}(pp \rightarrow H + X) = 35.11(2) \text{ pb}$

Infrared (soft/collinear) divergences \Rightarrow Subtraction of dipoles

$$\begin{split} \sigma_{\mathsf{LO}} &= \int_{m} \mathrm{d}\sigma_{\mathsf{B}} \\ \sigma_{\mathsf{NLO}} &= \sigma_{\mathsf{LO}} + \int_{m} \left[\mathrm{d}\sigma_{\mathsf{V}} + \mathrm{d}\sigma_{\mathsf{B}} \otimes \mathbf{I} \right] + \int_{m+1} \left[\mathrm{d}\sigma_{\mathsf{R}} - \sum_{\mathsf{dipoles}} \mathrm{d}\sigma_{\mathsf{B}} \otimes \mathbf{V} \right] \end{split}$$

Even NNLO can give sizable corrections but 2-loop is highly non-trivial

Interference effects also very important — and has large K-factors!

NLO QCD Corrections to the Interference

Non-Factorisable Corrections

Non-factorisable two-loop virtual corrections

Non-zero for a (heavy) Higgs of finite width

Three different masses in internal propagators \Rightarrow Beyond today's loop technology

Could be calculated by expansions in $\frac{\Gamma_{h_i}}{M_{h_i}}$

Non-Factorisable Corrections

IR divergent non-factorisable real contribution

IR divergent non-factorisable virtual contribution

Non-Factorisable Corrections

However, in the soft limit:

HELAC+OpenLoops

Gap in current MC landscape: Loop-induced \times tree interference at NLO \Rightarrow Need to develop our own NLO Monte Carlo framework

But no need to reinvent the wheel

Helac-Dipoles
 Dipole subtraction

Kaleu
 Phase space generation

OpenLoops Tree-level and loop amplitudes

Modify OpenLoops with:

- BSM extension
- Interface to get colour correlated helicity amplitudes

$$\mathrm{d}\sigma_{\mathsf{B}} \sim \langle \mathcal{M}_{\mathsf{B}} | \mathcal{M}_{\mathsf{B}}
angle \qquad \mathcal{D}_{ij,k} \sim \langle \mathcal{M}_{\mathsf{B}} | \frac{\mathbf{T}_k \cdot \mathbf{T}_{ij}}{\mathbf{T}_{ij}^2} \mathbf{V}_{ij,k} | \mathcal{M}_{\mathsf{B}}
angle$$

• One- and two-loop $gg \rightarrow H$ form factors (see next slides)

Form Factors for $gg \rightarrow H$

Coupling of a Higgs doublet to two on-shell gluons

$$\mathcal{V}^{\mu\nu,ab}(q_1,q_2) = \frac{\alpha_s}{4\pi v} F \,\delta^{ab} \left((q_1 \cdot q_2) \,g^{\mu\nu} - q_1^{\nu} \,q_2^{\mu} \right)$$

Form factor F can be represented as a series expansion in powers of α_s

$$F = F_1 + \frac{\alpha_s}{2\pi}F_2 + \mathcal{O}(\alpha_s^2)$$

Davies, Herren, Steinhauser [1911.10214] The one-loop form factor is

$$F_1 = -\sum_q \frac{2}{\tau_q^2} \left[\tau_q + \frac{1}{4} (1 - \tau_q) \ln^2 x_q \right]$$

Harlander, Kant [hep-ph/0509189]

Form Factors for $gg \rightarrow H$

The two-loop form factor is

$$F_{2} = \left(\frac{4\pi\mu_{R}^{2}}{-2(q_{1}\cdot q_{2}) - i0}\right)^{\epsilon} \frac{1}{\Gamma(1-\epsilon)} \left\{ -\left(\frac{C_{A}}{\epsilon^{2}} + \frac{\beta_{0}}{\epsilon} + \beta_{0}\ln\left(\frac{2(q_{1}\cdot q_{2})}{\mu_{R}^{2}}\right)\right) F_{1} + 2\sum_{q} \left[C_{F}\left(\mathcal{F}_{1/2}^{2l,a}(x_{q}) + \frac{4}{3}\mathcal{F}_{1/2}^{2l,b}(x_{q})\right) + C_{A}\mathcal{G}_{1/2}^{2l}(x_{q})\right]\right\}$$

Aglietti, Bonciani, Degrassi, Vicini [hep-ph/0611266]

Results: Integrated Cross Sections

NLO predictions with stable tops

QCD background: $|\mathcal{M}_{QCD}|^2$ Higgs signal: $|\mathcal{M}_{h_1}|^2 + |\mathcal{M}_{h_2}|^2 + 2 \operatorname{Re} \left(\mathcal{M}_{h_1}^* \mathcal{M}_{h_2} \right)$ Higgs–QCD interference: $2 \operatorname{Re} \left(\left(\mathcal{M}_{h_1}^* + \mathcal{M}_{h_2}^* \right) \mathcal{M}_{QCD} \right)$

 $pp (\rightarrow \{h_1\}) \rightarrow t\bar{t} + X$ in the SM

QCD background		Higgs signal		Higgs-QCD Interference	
$\sigma_{ m NLO}^{ m QCD}$ [pb]	$K^{\rm QCD}$	$\sigma_{ m NLO}^{ m Higgs}$ [pb]	$K^{ m Higgs}$	$\sigma_{ m NLO}^{ m interf}$ [pb]	K^{interf}
675.23(4)	1.5965(1)	0.030971(3)	1.6512(2)	-1.4625(1)	2.0101(2)

Ansatz from Hespel, Maltoni, Vryonidou, [1606.04149]:

 $\sigma_{\rm NLO}^{\rm interf} = \sqrt{K^{\rm Higgs} \cdot K^{\rm QCD}} \, \sigma_{\rm LO}^{\rm interf}$

This ansatz yields $K_{\text{estimate}}^{\text{interf}} = \sqrt{K^{\text{Higgs}} \cdot K^{\text{QCD}}} = 1.62 \text{ vs. ours } K^{\text{interf}} = 2.01$

Results: Integrated Cross Sections

Same story for our considered BSM model

$pp (\rightarrow \{h_1, h_2\}) \rightarrow t\bar{t} + X$ in the 1HSM						
		Higgs signal		Higgs–QCD interference		
	M_{h_2} [GeV]	$\sigma_{ m NLO}^{ m Higgs}$ [pb]	K^{Higgs}	$\sigma_{ m NLO}^{ m interf}$ [pb]	K^{interf}	
$ heta_1$	700	0.029108(2)	1.6234(2)	-1.388(8)	1.99(2)	
	1000	0.027334(2)	1.6459(2)	-1.3924(2)	2.0151(2)	
	1500	0.029932(3)	1.6745(2)	-1.4369(2)	2.0194(2)	
	3000	0.030933(3)	1.6661(2)	-1.4781(2)	2.0414(2)	
θ_2	700	0.027231(2)	1.5689(2)	-1.186(8)	1.88(2)	
	1000	0.020114(2)	1.6442(2)	-1.21053(9)	1.9867(2)	
	1500	0.026519(2)	1.6617(2)	-1.34853(9)	1.9958(2)	
	3000	0.029772(2)	1.6452(2)	-1.4365(2)	2.0097(2)	

 $M_{t\bar{t}}$ distribution for benchmark points with $\theta = \theta_1$

 $M_{t\bar{t}}$ distribution for benchmark points with $\theta = \theta_2$

NLO vs. LO

Zoomed in at the invariant mass windows

Estimation of theoretical uncertainties:

 7-point scale variation

20–30%

Results: Sensitivity Estimates to BSM Effects

Naive estimate for the significance from Poisson statistics

$$\frac{|S|}{\sqrt{B}} = \sqrt{\mathcal{L}} \frac{|\sigma_S|}{\sqrt{\sigma_B}}$$

 $\frac{|S|}{\sqrt{B}} > 2$

Excludable if

Run 2: $\mathcal{L} = 139 \text{ fb}^{-1}$ Run 3: $\mathcal{L} \approx 300 \text{ fb}^{-1}$ HL-LHC: $\mathcal{L} \approx 3000 \text{ fb}^{-1}$

		Invariant	Excludable		
	M_{h_2} [GeV]	mass window	Run 2	Run 3	HL-LHC
	700	600–790 GeV	\checkmark	\checkmark	\checkmark
$ heta_1$	1000	900–1115 GeV	-	\checkmark	\checkmark
	1500	1200–1600 GeV	_	-	-
	700	530–870 GeV	\checkmark	\checkmark	\checkmark
$ heta_2$	1000	830–1200 GeV	\checkmark	\checkmark	\checkmark
	1500	1050–1800 GeV	_	-	-

Outlook

The code can be generalised to work for any loop-induced process, e.g.

Double Higgs production

Effective field theories

• We have studied the interference of a heavy Higgs with the continuum QCD background at NLO QCD

• The interference is loop-induced \times tree-level at LO, and has a complicated structure at NLO

• This has required a specially built Monte Carlo – which can be now be used for other loop-induced processes