Field Theory and the Electroweak Standard Model

- lecture 1

Anna Kulesza (Univiversity of Münster]

Münster
Asia-Europe-Pacific School of High Energy Physics 2024 12-25.June 2024, Nakhon Pathom, Thailand

Prelude

Standard Model of particle physics

current state-of-the-art understanding of the fundamental particles of Nature and their interactions
\because result of over $60+$ years of research in experimental and theoretical particle physics
\% extremely successful in description of experimental data
\% with enormous predictive power
\% its success culminated in the discovery of the Higgs boson 12 years ago

picture credit: Swedish Royal Academy ofScience

Pinnacle of human thought

SM for pedestrians

\therefore Consistent theoretical description of known fundamental particles and their interactions

matter particles

Prelude ctnd.

More precisely:
relativistic Quantum Field Theory
based on principle of local gauge symmetry with the symmetry group given by

$$
S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}
$$

(famously fitting on a mug)

Prelude ctnd.

More precisely: Electroweak Standard Model =
relativistic Quantum Field Theory
based on principle of local gauge symmetry with the symmetry group given by

Electroweak (EW) theory
(famously fitting on a mug)

unified theory of weak and electromagnetic interactions broken to $U(1)_{Q}$ of electromagnetism
these lectures

Prelude ctnd.

More precisely: Electroweak Standard Model =

relativistic Quantum Field Theory

based on principle of local gauge symmetry with the symmetry group given by

$$
S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}
$$

Quantum Chromodynamics (QCD)
theory of strong interactions
exact symmetry
\rightarrow see lectures by Xu Feng

Electroweak (EW) theory
unified theory of weak and electromagnetic interactions broken to $U(1)_{Q}$ of electromagnetism
(famously fitting on a mug)

Prelude, or motivation

\% Standard Model (EW+ QCD) is a key to future discoveries in particle physics - any new phenomena will be seen as deviation from SM predictions

* The Higgs sector of the Standard Model is not yet established
* Time and again, new results appear which call for very deep understanding of the underlying Standard Model physics

[^0]
Literature

\% There are plenty of resources on the subject, including:
\% Textbooks, for example:
: M.D. Schwartz, Quantum Field Theory and the Standard Model
\therefore M. Maggiore, A Modern Introduction to Quantum Field Theory
$\%$ I. Aitchison, A. Hey, Gauge Theories in Particle Physics
: M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory

* S. Weinberg, The Quantum Theory of Fields, vol. 1 \& 2
\% ...
: Write-ups and slides of excellent lectures given at previous editions of AEPSHEP!

Convention, notation

\% Natural units: $\hbar=c=1$
\therefore Metric tensor in Minkowski space $g_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)$
\% 4 -vectors

$$
\begin{array}{ll}
\text { contravariant } & \text { covariant } \\
x^{\mu}=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=(t, \mathbf{x}) & x_{\mu}=g_{\mu \nu} x^{\nu} \\
p^{\mu}=\left(p^{0}, p^{1}, p^{2}, p^{3}\right)=(E, \mathbf{p}) & p_{\mu}=g_{\mu \nu} p^{\nu} \\
\partial_{\mu}=\left(\frac{\partial}{\partial x^{0}}, \frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{2}}, \frac{\partial}{\partial x^{3}}\right)=\left(\partial_{0}, \nabla\right) & \partial^{\mu}=\left(\partial_{0},-\nabla\right)
\end{array}
$$

- Scalar product

$$
A \cdot B=A^{\mu} B_{\mu}=A^{0} B^{0}-\mathbf{A} \mathbf{B}=A_{\mu} B^{\mu}=g_{\mu \nu} A^{\mu} B^{\nu}=g^{\mu \nu} A_{\mu} B_{\nu} \quad \text { invariant under Lorentz transformation }
$$

Examples: $\quad x^{2}=x^{\mu} x_{\mu}=t^{2}-\mathbf{x}^{2}, \quad p^{2}=p^{\mu} p_{\mu}=E^{2}-\mathbf{p}^{2}, \quad \square=\partial^{\mu} \partial_{\mu}=\frac{\partial^{2}}{\partial t^{2}}-\nabla$
\% For a free particle $p^{2}=m^{2}=E^{2}-\mathbf{p}^{2}$

Fields, classically

\therefore Fields $=$ functions of space-time $\phi_{i}(x)$ with definite transformation properties under Lorentz transformations
\% In Lagrangian formalism, dynamics of the physical system involving a set of fields $\phi(x)$ determined by $L=\int d^{3} x \mathscr{L}\left(\phi, \partial_{\mu} \phi\right)$, yielding the action

$$
S[\phi]=\int d t L=\int d^{4} x \mathscr{L}\left(\phi, \partial_{\mu} \phi\right)
$$

: Equation of motions, or Euler-Lagrange equations

$$
\frac{\partial \mathscr{L}}{\partial \phi_{i}}-\partial_{\mu} \frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \phi_{i}\right)}=0
$$

follow from the principle of stationary action $\delta S=0$

Field quantisation

* Canonical quantisation: operator formulation
* promote the field $\phi(x)$ and its conjugate momenta $\Pi(x)=\frac{\partial \mathscr{L}}{\partial\left(\partial_{0} \phi(x)\right)}$ to operators, impose quantisation conditions in the form of equal-time (anti)commutation relations (Heisenberg picture)
\because Analogy with quantisation in QM, where coordinates q_{i} and momenta p_{i} become operators \hat{q}_{i}, \hat{p}_{i} that obey $\left[\hat{q}_{i}, \hat{p}_{j}\right]=i \delta_{i j} \quad \rightarrow$ "first" and "second" quantisation
* creation and annihilation operators (again in analogy to QM)
\% results in intrinsically perturbative QFT

\therefore Path integral quantisation

\therefore Transition amplitude between field configurations $\phi_{i}(x)$ at time t_{i} and $\phi_{f}(x)$ at time t_{f} given by sum over all possible field configurations, i.e. the quantum field "explores" all possible configurations

$$
\int_{\phi_{i}(x)}^{\phi_{j}(x)} \mathscr{D} \phi \exp \left(i \int_{t_{i}}^{t_{f}} d^{4} x \mathscr{L}\right)
$$

\because provides non-perturbative definition of the theory
\therefore Actual computations often simpler that in the operator formalism

The fields we need

\because Scalar fields $\phi(x):$ spin 0
\therefore Spinor fields $\psi_{\alpha}(x):$ spin $1 / 2$
\therefore Vector fields $A^{\mu}(x)$: spin 1
\rightarrow In QFT, particles correspond to excitation modes of the fields

Scalar field

\because Consider free real scalar field with $\mathscr{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{m^{2}}{2} \phi^{2} \leftrightarrow$ neutral spinless particle with mass m
\therefore Euler-Lagrange equation of motion (e.o.m) is the Klein-Gordon equation $\left(\square+m^{2}\right) \phi=0$
\% The most general solution of e.o.m. is a superposition of plane waves $e^{ \pm i k x}$:

$$
\phi(x)=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{\mathbf{k}}}\left[a(\mathbf{k}) e^{-i k x}+a^{*}(\mathbf{k}) e^{i k x}\right]
$$

$\%$ Quantisation: $[\phi(t, \mathbf{x}), \Pi(t, \mathbf{y})]=i \delta^{(3)}(\mathbf{x}-\mathbf{y}),[\phi(t, \mathbf{x}), \phi(t, \mathbf{y})]=0,[\Pi(t, \mathbf{x}), \Pi(t, \mathbf{y})]=0$

$$
\phi(x)=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{\mathbf{k}}}\left[a(\mathbf{k}) e^{-i k x}+a^{\dagger}(\mathbf{k}) e^{i k x}\right] \quad \Rightarrow \quad\left[a(\mathbf{p}), a^{\dagger}(\mathbf{q})\right]=(2 \pi)^{3} \delta^{(3)}(\mathbf{p}-\mathbf{q}) \quad[a(\mathbf{p}), a(\mathbf{q})]=0 \quad\left[a^{\dagger}(\mathbf{p}), a^{\dagger}(\mathbf{q})\right]=0
$$

\% analogy to creation and annihilation operators of the harmonic oscillator in QM with one oscillator per each value of k, here relates to particle with $E_{\mathbf{k}}=\left(\mathbf{k}^{2}+m^{2}\right)^{1 / 2}$
: Fock space of states: sum of an infinite set of Hilbert spaces, each representing an n-particle state
\% vacuum state defined by $a(\mathbf{p})|0\rangle=0,\langle 0 \mid 0\rangle=1$
\because generic n-particle state obtained by acting on vacuum with creation operators $\left|\mathbf{k}_{1} \ldots \mathbf{k}_{\mathbf{n}}\right\rangle=\left(2 E_{\mathbf{k}_{1}}\right)^{(1 / 2)} \ldots\left(2 E_{\mathbf{k}_{\mathbf{n}}}\right)^{(1 / 2)} a^{\dagger}\left(\mathbf{k}_{\mathbf{1}}\right) \ldots a^{\dagger}\left(\mathbf{k}_{\mathbf{n}}\right)|\mathbf{0}\rangle$

Scalar field

*. Consider free real scalar field with $\mathscr{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{m^{2}}{2} \phi^{2} \leftrightarrow$ neutral spinless particle with mass m

* Euler-Lagrange equation of motion (e.o.m) is the Klein-Gordon equation $\left(\square+m^{2}\right) \phi=0$
* The most general solution of e.o.m. is a superp

Hamiltonian
\therefore Quantisation: $[\phi(t, \mathbf{x}), \Pi(t, \mathbf{y})]=i \delta^{(3)}(\mathbf{x}-\mathbf{y}),[$

$$
\phi(x)=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{\mathbf{k}}}\left[a(\mathbf{k}) e^{-i k x}+a^{\dagger}(\mathbf{k}) e^{i k x}\right]
$$

* analogy to creation and annihilation operators O * particle with $E_{\mathbf{k}}=\left(\mathbf{k}^{2}+m^{2}\right)^{1 / 2}$
* Fock space of states: sum of an infinite set of Hi Since $\left|\mathbf{k}_{\mathbf{1}} \mathbf{k}_{\mathbf{2}}\right\rangle=\left(2 E_{\mathbf{k}_{1}}{ }^{(1 / 2)}\left(2 E_{\mathbf{k}_{2}}\right)^{(1 / 2)} a^{\dagger}\left(\mathbf{k}_{1}\right) a^{\dagger}\left(\mathbf{k}_{2}\right)|0\rangle\right.$ and $\left[a^{\dagger}\left(\mathbf{k}_{1}\right), a^{\dagger}\left(\mathbf{k}_{2}\right)\right]=0$, it follows

$$
\left|k_{2} k_{1}\right\rangle=\left|k_{1} k_{2}\right\rangle
$$

* vacuum state defined by $a(\mathbf{p})|0\rangle=0,\langle 0| C$ i.e. scalar field quanta obey Bose-Einstein statistics \rightarrow bosons
* generic n-particle state obtained by acting on vacuum with creation operators $\left|\mathbf{k}_{1} \ldots \mathbf{k}_{\mathbf{n}}\right\rangle=\left(2 E_{\mathbf{k}_{1}}{ }^{(1 / 2)} \ldots\left(2 E_{\mathbf{k}_{\mathbf{n}}}{ }^{(1 / 2)} a^{\dagger}\left(\mathbf{k}_{1}\right) \ldots a^{\dagger}\left(\mathbf{k}_{\mathbf{n}}\right)|0\rangle\right.\right.$

Scalar field

\therefore Consider free real scalar field with $\mathscr{L}=\frac{1}{2} \partial$

* Euler-Lagrange equation of motion (e.o.m)
*The most general solution of e.o.m. is a sup
\because Quantisation: $[\phi(t, \mathbf{x}), \Pi(t, \mathbf{y})]=i \delta^{(3)}(\mathbf{x}-\mathbf{y})$

$$
\phi(x)=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{\mathbf{k}}}\left[a(\mathbf{k}) e^{-i k x}+a^{\dagger}(\mathbf{k}) e^{i k}\right.
$$

\therefore analogy to creation and annihilation operato particle with $E_{\mathbf{k}}=\left(\mathbf{k}^{2}+m^{2}\right)^{1 / 2}$
\therefore Fock space of states: sum of an infinite set o
\because vacuum state defined by $a(\mathbf{p})|0\rangle=0$,
\because generic n-particle state obtained by acti

Complex scalar field: $\quad \mathscr{L}=\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-m^{2} \phi^{\dagger} \phi$

$$
\begin{gathered}
\phi(x)=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{\mathbf{k}}}\left[a(\mathbf{k}) e^{-i k x}+b^{\dagger}(\mathbf{k}) e^{i k x}\right] \\
H=\int \frac{d^{3} k}{(2 \pi)^{3}} E_{\mathbf{k}}\left[a^{\dagger}(\mathbf{k}) a(\mathbf{k})+b^{\dagger}(\mathbf{k}) b(\mathbf{k})\right] \\
Q=\int \frac{d^{3} k}{(2 \pi)^{3}}\left[a^{\dagger}(\mathbf{k}) a(\mathbf{k})-b^{\dagger}(\mathbf{k}) b(\mathbf{k})\right] \\
Q a^{\dagger}(\mathbf{k})|0\rangle=(+1) a^{\dagger}(\mathbf{k})|0\rangle \quad Q b^{\dagger}(\mathbf{k})|0\rangle=(-1) b^{\dagger}(\mathbf{k})|0\rangle \\
a^{\dagger} \text { creates particles }, b^{\dagger} \text { creates antiparticles }
\end{gathered}
$$

$|\mathbf{k}\rangle$ is a one-particle state with definite momentum. In order to have localised particles one needs to build wave packets

$$
|\chi\rangle=\int \frac{d^{3} k}{(2 \pi)^{3} \sqrt{2 E_{\mathrm{k}}}} f_{\chi}(\mathbf{k}) a^{\dagger}(\mathbf{k})|0\rangle
$$

with $f_{\chi}(\mathbf{k})$ square-integrable (peaked around some \mathbf{k}_{0} such that $\langle 0| \phi(x)|\chi\rangle$ is localised)

Spinor fields: Dirac

*SM fermions described by 4-component spinor fields
\% Their e.o.m. is given by the Dirac equation which can be derived from the Dirac Lagrangian

$$
\left.\begin{array}{l}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0 \\
\mathscr{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi \\
\psi_{4}(x)
\end{array}\right)
$$

$$
\text { with } \bar{\psi}=\psi^{\dagger} \gamma^{0} \text { and } 4 \times 4 \text { Dirac matrices } \gamma^{\mu}(\mu=0,1,2,3) \text {, obeying the algebra }\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}
$$

\%. Explicit form of the Dirac matrices not unique, an example is the Dirac representation $\gamma^{0}=\left(\begin{array}{cc}\mathbf{1} & 0 \\ 0 & \mathbf{1}\end{array}\right) \quad \gamma^{i}=\left(\begin{array}{cc}0 & \sigma^{i} \\ -\sigma^{i} & 0\end{array}\right)$ (with Pauli matrices σ^{i})
\therefore Canonical quantisation relies on imposing anticommutation relations:

$$
\left\{\psi_{\alpha}(\mathbf{x}, t), \Pi_{\beta}(\mathbf{y}, t)\right\}=i \delta_{\alpha, \beta} \delta^{(3)}(\mathbf{x}-\mathbf{y}) \quad\left\{\psi_{\alpha}(\mathbf{x}, t), \psi_{\beta}(\mathbf{y}, t)\right\}=0 \quad\left\{\Pi_{\alpha}(\mathbf{x}, t), \Pi_{\beta}(\mathbf{y}, t)\right\}=0
$$

\therefore The general solution of the Dirac equation is a superposition of plane waves $u(p) e^{-i p x}$ and $v(p) e^{i p x}$ with 4-component spinors $u(p)$ and $v(p)$ fulfilling $\left(p^{\mu} \gamma_{\mu}-m\right) u(p)=0 \quad\left(p^{\mu} \gamma_{\mu}+m\right) v(p)=0$

$$
\psi(x)=\int \frac{d^{3} k}{(2 \pi)^{3} \sqrt{2 E_{\mathbf{k}}}} \sum_{s=1,2}\left(a_{s}(\mathbf{k}) u^{(s)}(k) e^{-i k x}+b_{s}^{\dagger}(\mathbf{k}) \bar{v}^{(s)}(k) e^{i k x}\right)
$$

Spinor fields: Dirac ctnd.

$$
\psi(x)=\int \frac{d^{3} k}{(2 \pi)^{3} \sqrt{2 E_{\mathbf{k}}}} \sum_{s=1,2}\left(a_{s}(\mathbf{k}) u^{(s)}(k) e^{-i k x}+b_{s}^{\dagger}(\mathbf{k}) \overline{\bar{v}}^{(s)}(k) e^{i k x}\right)
$$

*. Classically, $u(p)$ corresponds to positive energy solutions $E_{\mathbf{p}}=+\sqrt{\mathbf{p}^{2}+m^{2}}$,
whereas $v(p)$ corresponds to negative energy solutions $E_{\mathbf{p}}=-\sqrt{\mathbf{p}^{2}+m^{2}}$

* For each energy solution, two-fold degeneracy, i.e. $\quad\left(p^{\mu} \gamma_{\mu}-m\right) u(p)=0 \quad\left(p^{\mu} \gamma_{\mu}+m\right) v(p)=0 \quad$ have two solutions each
*. They can be identified as helicity eigenstates, $\frac{1}{2} \frac{\boldsymbol{\Sigma} \mathbf{p}}{|\mathbf{p}|} u^{(1,2)}= \pm \frac{1}{2} u^{(1,2)} \quad \frac{1}{2} \frac{\boldsymbol{\Sigma} \mathbf{p}}{|\mathbf{p}|} v^{(1,2)}=\mp \frac{1}{2} v^{(1,2)}$
* After quantisation, interpretation of operators:
$\therefore a_{s}^{\dagger}(\mathbf{k})$ creates fermions, $a_{s}(\mathbf{k})$ annihilates fermions
- $b_{s}^{\dagger}(\mathbf{k})$ creates antifermions, $b_{s}(\mathbf{k})$ annihilates antifermions

Spinor fields: Dirac ctnd.

$$
\psi(x)=\int \frac{d^{3} k}{(2 \pi)^{3} \sqrt{2 E_{\mathbf{k}}}} \sum_{s=1,2}\left(a_{s}(\mathbf{k}) u^{(s)}(k) e^{-i k x}+b_{s}^{\dagger}(\mathbf{k}) \overline{\bar{v}}^{(s)}(k) e^{i k x}\right)
$$

*. Classically, $u(p)$ corresponds to positive energy solutions $E_{\mathbf{p}}=+\sqrt{\mathbf{p}^{2}+m^{2}}$,
whereas $v(p)$ corresponds to negative energy solutions $E_{\mathbf{p}}=-\sqrt{\mathbf{p}^{2}+m^{2}}$

* For each energy solution, two-fold degeneracy, i.e. $\quad\left(p^{\mu} \gamma_{\mu}-m\right) u(p)=0 \quad\left(p^{\mu} \gamma_{\mu}+m\right) v(p)=0 \quad$ have two solutions each
*They can be identified as helicity eigenstates, $\frac{1}{2} \frac{\boldsymbol{\Sigma} \mathbf{p}}{|\mathbf{p}|} u^{(1,2)}= \pm \frac{1}{2} u^{(1,2)} \quad \frac{1}{2} \frac{\boldsymbol{\Sigma} \mathbf{p}}{|\mathbf{p}|} v^{(1,2)}=\mp \frac{1}{2} v^{(1,2)}$
* After quantisation, interpretation of operators:
* $a_{s}^{\dagger}(\mathbf{k})$ creates fermions, $a_{s}(\mathbf{k})$ annihil
$|\mathbf{k}, s ; \mathbf{k}, s\rangle \propto a_{s}^{\dagger}(\mathbf{k}) a_{s}^{\dagger}(\mathbf{k})|0\rangle \propto\left\{a_{s}^{\dagger}(\mathbf{k}), a_{s}^{\dagger}(\mathbf{k})\right\}|0\rangle$ and $\left\{a^{\dagger}\left(\mathbf{k}_{1}\right), a^{\dagger}\left(\mathbf{k}_{2}\right)\right\}=0$, $\Rightarrow|\mathbf{k}, s ; \mathbf{k}, s\rangle=0 \quad$ Pauli exclusion principle \rightarrow Fermi-Dirac statistics
* $b_{s}^{\dagger}(\mathbf{k})$ creates antifermions, $b_{s}(\mathbf{k})$ annnnurates anturernmons

Vector fields

* Charged field, massive case:
:From Lagrangian $\mathscr{L}=-\frac{1}{4} W_{\mu \nu}^{\dagger} W^{\mu \nu}-\frac{m^{2}}{2} W_{\mu}^{\dagger} W^{\mu} \quad$ (with $W^{\mu \nu}=\partial^{\mu} W^{\nu}-\partial^{\nu} W^{\mu}$) follows the field equation (Proca equation) $\left[\left(\square+m^{2}\right) g^{\mu \nu}-\partial^{\mu} \partial^{\nu}\right] W_{\nu}=0$
\because Solutions given by plane waves of the form $\epsilon_{\mu}(\mathbf{k}, \lambda) e^{ \pm i k x}, \lambda=1,2,3$ with 3 independent polarisation vectors $\epsilon_{\mu}(\mathbf{k}, \lambda)$ $\epsilon(\mathbf{k}, \lambda) \cdot k=0, \quad \epsilon^{*}(\mathbf{k}, \lambda) \cdot \epsilon\left(\mathbf{k}, \lambda^{\prime}\right)=-\delta_{\lambda, \lambda^{\prime}} \quad \sum_{\lambda=1}^{3} \epsilon_{\mu}^{*}(\mathbf{k}, \lambda) \epsilon_{\nu}(\mathbf{k}, \lambda)=-g_{\mu \nu}+\frac{k_{\mu} k_{\nu}}{m^{2}}$
$\%$ Quantised vector field $W_{\mu}(x)=\sum_{\lambda=1}^{3} \int \frac{d^{3} k}{(2 \pi)^{3} \sqrt{E}}\left[\epsilon_{\mu}(\mathbf{k}, \lambda) a_{\lambda}(\mathbf{k}) e^{-i k x}+\epsilon_{\mu}^{*}(\mathbf{k}, \lambda) b_{\lambda}^{\dagger}(\mathbf{k}) e^{i k x}\right]$
\because Neutral field, massless case (for $\mathrm{m}=0$ Proca eq. turns in Maxwell eq. $\partial_{\mu} F^{\mu \nu}=0$):

$$
A_{\mu}(x)=\sum_{\lambda=0}^{3} \int \frac{d^{3} k}{(2 \pi)^{3} \sqrt{E}_{\mathbf{k}}}\left[\epsilon_{\mu}(\mathbf{k}, \lambda) a_{\lambda}(\mathbf{k}) e^{-i k x}+\epsilon_{\mu}^{*}(\mathbf{k}, \lambda) a_{\lambda}^{\dagger}(\mathbf{k}) e^{i k x}\right]
$$

Vector fields

* Charged field, massive case:
:From Lagrangian $\mathscr{L}=-\frac{1}{4} W_{\mu \nu}^{\dagger} W^{\mu \nu}-\frac{m^{2}}{2} W_{\mu}^{\dagger} W^{\mu} \quad$ (with $W^{\mu \nu}=\partial^{\mu} W^{\nu}-\partial^{\nu} W^{\mu}$) follows the field equation (Proca equation) $\left[\left(\square+m^{2}\right) g^{\mu \nu}-\partial^{\mu} \partial^{\nu}\right] W_{\nu}=0$
$\%$ Solutions given by plane waves of the form $\epsilon_{\mu}(\mathbf{k}, \lambda) e^{ \pm i k x}, \lambda=1,2,3$ with 3 independent polarisation vectors $\epsilon_{\mu}(\mathbf{k}, \lambda)$

$$
\epsilon(\mathbf{k}, \lambda) \cdot k=0, \quad \epsilon^{*}(\mathbf{k}, \lambda) \cdot \epsilon\left(\mathbf{k}, \lambda^{\prime}\right)=-\delta_{\lambda, \lambda^{\prime}} \quad \sum_{\lambda=1}^{3} \epsilon_{\mu}^{*}(\mathbf{k}, \lambda) \epsilon_{\nu}(\mathbf{k}, \lambda)=-g_{\mu \nu}+\frac{k_{\mu} k_{\nu}}{m^{2}}
$$

$\%$ Quantised vector field $W_{\mu}(x)=\sum_{\lambda=1}^{3} \int \frac{d^{3} k}{(2 \pi)^{3} \sqrt{E}}\left[\epsilon_{\mu}(\mathbf{k}, \lambda) a_{\lambda}(\mathbf{k}) e^{-i k x}+\epsilon_{\mu}^{*}(\mathbf{k}, \lambda) b_{\lambda}^{\dagger}(\mathbf{k}) e^{i k x}\right]$
\% Neutral field, massless case (for $\mathrm{m}=0$ Proca eq. turns in Maxwell eq. $\partial_{\mu} F^{\mu \nu}=0$):

$$
A_{\mu}(x)=\sum_{\lambda=0}^{3} \int \frac{d^{3} k}{(2 \pi)^{3} \sqrt{E}}\left[\epsilon_{\mu}(\mathbf{k}, \lambda) a_{\lambda}(\mathbf{k}) e^{-i k x}+\epsilon_{\mu}^{*}(\mathbf{k}, \lambda) a_{\lambda}^{\dagger}(\mathbf{k}) e^{i k x}\right]
$$

Canonical quantisation non-trivial \rightarrow only two physical polarisations in the massless case, yet 4 degrees of freedom

Recap: free fields

* Scalar fields

$$
|k\rangle=a^{\dagger}(\mathbf{k})|0\rangle
$$

$\langle 0| \phi(x)|k\rangle=e^{-i k x} \quad\langle k| \phi(x)|0\rangle=e^{i k x}$

Recap: free fields

- Scalar fields

$$
|k\rangle=a^{\dagger}(\mathbf{k})|0\rangle
$$

$\langle 0| \phi(x)|k\rangle=e^{-i k x}$

$$
\langle k| \phi(x)|0\rangle=e^{i k x}
$$

* Fermion fields

$$
|k, s\rangle=a_{s}^{\dagger}(\mathbf{k})|0\rangle
$$

$\langle 0| \psi(x)|k, s\rangle=u^{(s)}(k) e^{-i k x}$

$$
\langle k, s| \bar{\psi}(x)|0\rangle=\bar{u}^{(s)}(k) e^{i k x}
$$

: Antifermion fields

$$
|k, s\rangle=b_{s}^{\dagger}(\mathbf{k})|0\rangle
$$

$\langle 0| \bar{\psi}(x)|k, s\rangle=\bar{v}^{(s)}(k) e^{-i k x}$

$$
\langle k, s| \psi(x)|0\rangle=v^{(s)}(k) e^{i k x}
$$

: Vector fields

$$
|k, \lambda\rangle=a_{\lambda}^{\dagger}(\mathbf{k})|0\rangle
$$

$\langle 0| A_{\mu}(x)|k, \lambda\rangle=\epsilon_{\mu}(\mathbf{k}, \lambda) e^{-i k x}$

$$
\langle k, \lambda| A_{\mu}(x)|0\rangle=\epsilon_{\mu}^{*}(\mathbf{k}, \lambda) e^{i k x}
$$

Recap: free fields

* Scalar fields

$$
|k\rangle=a^{\dagger}(\mathbf{k})|0\rangle
$$

$\langle 0| \phi(x)|k\rangle=e^{-i k x} \quad\langle k| \phi(x)|0\rangle=e^{i k x}$

* Fermion fields $\quad|k, s\rangle=a_{s}^{\dagger}(\mathbf{k})|0\rangle$
$\langle 0| \psi(x)|k, s\rangle=u^{(s)}(k) e^{-i k x} \quad\langle k, s| \bar{\psi}(x)|0\rangle=\bar{u}^{(s)}(k) e^{i k x}$
* Antifermion fields $\quad|k, s\rangle=b_{s}^{\dagger}(\mathbf{k})|0\rangle$
$\langle 0| \bar{\psi}(x)|k, s\rangle=\bar{v}^{(s)}(k) e^{-i k x} \quad\langle k, s| \psi(x)|0\rangle=v^{(s)}(k) e^{i k x}$
* Vector fields $\quad|k, \lambda\rangle=a_{\lambda}^{\dagger}(\mathbf{k})|0\rangle$
$\langle 0| A_{\mu}(x)|k, \lambda\rangle=\epsilon_{\mu}(\mathbf{k}, \lambda) e^{-i k x} \quad\langle k, \lambda| A_{\mu}(x)|0\rangle=\epsilon_{\mu}^{*}(\mathbf{k}, \lambda) e^{i k x}$

$\begin{array}{ll}\epsilon_{\mu}(\mathbf{k}, \lambda) & \text { incoming } \\ \epsilon_{*}^{*}(\mathbf{k}, \lambda) & \text { outgoing }\end{array}$ $\epsilon_{\mu}^{*}(\mathbf{k}, \lambda)$ outgoing

Propagators

\% So far: free particles. Eventually: interactions
$\%$ For simplicity, consider scalar fields. Interaction of the field $\phi(x)$ with a source $J(x)$ will modify the Klein-Gordon eq.

$$
\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \phi(x)=J(x)
$$

which can be obtained from the Lagrangian $\mathscr{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{m^{2}}{2} \phi^{2}+J \phi$
$\%$ An inhomogeneous equation of this sort can be solved provided the Green's function is known, i.e. the solution to the field equation with a delta function source, here

$$
\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) G(x-y)=-\delta^{(4)}(x-y)
$$

\therefore Fourier transformation

$$
\delta^{(4)}(x-y)=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k \cdot(x-y)}, \quad G(x-y)=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k \cdot(x-y)} G(k) \text { leads to } \quad\left(k^{2}-m^{2}\right) G(k)=1
$$

\% The solution

$$
G_{F}(x-y)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}-m^{2}+i \epsilon} e^{-i k \cdot(x-y)} \quad \text { is known as the Feynman propagator }
$$

Propagators ctnd.

$$
G_{F}(x-y)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}-m^{2}+i \epsilon} e^{-i k \cdot(x-y)}
$$

\because Using the field expansion expression and the properties of the a^{\dagger}, a operators, the amplitude for particle propagation from y to x is

$$
\langle 0| \phi(x) \phi(y)|0\rangle=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{k}}} e^{-i k \cdot(x-y)}
$$

\therefore Integrating over k^{0} in the Feynman propagator yields

$$
i G_{F}(x-y)=\int \frac{d^{3} k}{(2 \pi)^{3} k^{0}}\left[e^{-i k \cdot(x-y)} \Theta\left(x^{0}-y^{0}\right)+e^{i k \cdot(x-y)} \Theta\left(y^{0}-x^{0}\right)\right]_{k^{0}=E_{\mathbf{k}}}=\langle 0| \phi(x) \phi(y)|0\rangle \Theta\left(x^{0}-y^{0}\right)+\langle 0| \phi(y) \phi(x)|0\rangle \Theta\left(y^{0}-x^{0}\right)
$$

The appearance of the theta functions results from the $+i \epsilon$ term in the denominator, providing prescription how to treat the poles at $k^{2}=m^{2}$
\therefore Time-ordering operator T arranges operators in chronological order, from right to left: $i G_{F}(x-y)=\langle 0| T(\phi(x) \phi(y))|0\rangle$
\% Propagation of a particle from y to x if $x^{0}>y^{0}$
\therefore Propagation of a particle from x to y if $y^{0}>x^{0}$, or propagation of an antiparticle for complex fields; i $G_{F}(x-y)=\langle 0| T\left(\phi(x) \phi^{\dagger}(y)\right)|0\rangle$

Feynman propagators

In position-space

In momentum-space

* Scalar field

$$
\langle 0| T\left(\phi(x) \phi^{\dagger}(y)\right)|0\rangle=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i}{k^{2}-m^{2}+i \epsilon} e^{-i k \cdot(x-y)}
$$

$$
-------\quad \frac{i}{k^{2}-m^{2}+i \epsilon}
$$

* Fermion field

$$
\langle 0| T\left(\psi(x) \bar{\psi}(y)|0\rangle=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i\left(k_{\mu} \gamma^{\mu}+m\right)}{k^{2}-m^{2}+i \epsilon} e^{-i k \cdot(x-y)}\right.
$$

$$
\longrightarrow \frac{i\left(k_{\mu} \gamma^{\mu}+m\right)}{k^{2}-m^{2}+i \epsilon}
$$

* Massive vector field

$$
\langle 0| T\left(W_{\mu}(x) \bar{W}_{\nu}(y)|0\rangle=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i\left(-g_{\mu \nu}+k_{\mu} k_{\nu} / m^{2}\right)}{k^{2}-m^{2}+i \epsilon} e^{-i k \cdot(x-y)}\right.
$$

$$
\sim \Omega \frac{i\left(-g_{\mu \nu}+k_{\mu} k_{\nu} / m^{2}\right)}{k^{2}-m^{2}+i \epsilon}
$$

* Massless vector field (Feynman gauge)
$\langle 0| T\left(A_{\mu}(x) \bar{A}_{\nu}(y)|0\rangle=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{-i g_{\mu \nu}}{k^{2}+i \epsilon} e^{-i k \cdot(x-y)}\right.$

$$
\frac{-i g_{\mu \nu}}{k^{2}+i \epsilon}
$$

Gauge fixing

$\%$ EM wave has two degrees of freedom: two polarisation vectors for transverse polarisation $\boldsymbol{\epsilon}(\mathbf{k}, \lambda) \mathbf{k}=0,(\lambda=1,2)$ but Lorentz covariant formulation of Maxwell eqs. uses on the 4 -vector potential A^{μ}
\because The equation for the propagator of the massless vector field $\left(-k^{2} g^{\mu \nu}+k^{\mu} k^{\nu}\right) G_{\nu \rho}=g_{\rho}^{\mu}$ does not have a solution
$\%$ The Maxwell Lagrangian is invariant under the gauge transformation $A_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \theta$ with θ an arbitrary regular function. The gauge transformation can be used to remove unphysical polarisations

* Canonical quantisation non-trivial (redundant d.o.f or non-covariant formulation)
\because Remedy: adding a gauge-fixing term $\mathscr{L}_{G F}$ to the Maxwell Lagrangian (and, in canonical quantisation, imposing a Lorenz-conditionlike restriction on the Fock space)

$$
\mathscr{L}_{G F}=-\frac{1}{2 \zeta}\left(\partial^{\mu} A_{\mu}^{a}\right)^{2} \quad \zeta: \text { arbitrary finite parameter }(\zeta=1 \text { Feynman gauge, } \zeta=0 \text { Landau gauge })
$$

คนっ $=\frac{-i \delta_{a b}}{p^{2}+i \epsilon}\left(g^{\mu \nu}-(1-\zeta) p^{\mu} p^{\nu} / p^{2}\right)$

* The procedure breaks gauge invariance, but physical results are independent of the gauge.

Gauge fixing

$\%$ EM wave has two degrees of freedom: two polarisation vectors for transverse polarisation $\boldsymbol{\epsilon}(\mathbf{k}, \lambda) \mathbf{k}=0,(\lambda=1,2)$ but Lorentz covariant formulation of Maxwell eqs. uses on the 4 -vector potential A^{μ}
\because The equation for the propagator of the massless vector field $\left(-k^{2} g^{\mu \nu}+k^{\mu} k^{\nu}\right) G_{\nu \rho}=g_{\rho}^{\mu}$ does not have a solution
\because The Maxwell Lagrangian is invariant under the gauge transformation $A_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \theta$ with θ an arbitrary regular function. The gauge transformation can be used to remove unphysical polarisations

* Canonical quantisation non-trivial (redundant d.o.f or non-covariant formulation)
\because Remedy: adding a gauge-fixing term $\mathscr{L}_{G F}$ to the Maxwell Lagrangian (and, in like restriction on the Fock space)

$$
\mathscr{L}_{G F}=-\frac{1}{2 \zeta}\left(\partial^{\mu} A_{\mu}^{a}\right)^{2}
$$

$\zeta:$ arbitrary

$$
=\frac{-i \delta_{a b}}{p^{2}+i \epsilon}\left(g^{\mu \nu}-(1-\zeta) p^{\mu} p^{\nu} / t\right.
$$

For gluons additional measures needed: extra
term in the Lagrangian introducing
unphysical particles ("ghosts") which cancel
the effects of the unphysical longitudinal and
timelike polarizations states

* The procedure breaks gauge invariance, but physical results are independent of the gauge.

Interactions

$\%$ Use perturbation theory (\rightarrow interaction as a small perturbation to the free theory) to calculate physical quantities such as cross sections etc.
\because Interaction localised in a region of spacetime \rightarrow treat particles as free at far away in the past and in the future (free asymptotic states)

$$
\left.\left.|\psi(t=-\infty)\rangle=\mid p_{1}, \ldots, p_{n} ; \text { in }\right\rangle \quad|\psi(t=\infty)\rangle=\mid p_{1}^{\prime}, \ldots, p_{m}^{\prime} ; \text { out }\right\rangle
$$

\therefore Transition amplitude for a scattering process defines the unitary S-matrix operator

$$
\begin{aligned}
\left.\left\langle p_{1}^{\prime}, \ldots, p_{m}^{\prime} ; \text { out }\right| p_{1}, \ldots, p_{n} ; \text { in }\right\rangle=\langle\psi(t=\infty) \mid \psi(t=-\infty)\rangle \quad\langle f| S|i\rangle=S_{f i} \quad \text { with }|\psi(t=-\infty)\rangle=|i\rangle \text { and }|\psi(t=\infty)\rangle=S|i\rangle \\
\because S^{\dagger} S=1 \Rightarrow \sum_{k} S_{k f}^{*} S_{k i}=\delta_{f i} \Rightarrow \sum_{k}\left|S_{k i}\right|^{2}=1 \quad \text { probabilities over all } i \rightarrow k \text { transitions sum up to } 1
\end{aligned}
$$

S-matrix and Feynman rules

*. Dyson expansion of the S operator $S=\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \int d^{4} x_{1} \ldots \int d^{4} x_{n} T\left(\mathscr{H}_{\text {int }}\left(x_{1}\right) \ldots \mathscr{H}_{\text {int }}\left(x_{n}\right)\right)$ with $\mathscr{H}_{\text {int }}$ the interaction part of the Hamiltonian density in the interaction picture
\Rightarrow calculation of $\left\langle p_{1}^{\prime}, \ldots, p_{m}^{\prime}\right| S\left|p_{1}, \ldots, p_{n}\right\rangle$ involves time-ordered products of field operators
\rightarrow consider e.g. $\langle 0| a\left(\mathbf{p}_{\mathbf{1}}^{\prime}\right) \ldots a\left(\mathbf{p}_{\mathbf{m}}^{\prime}\right)\left|T\left(\phi\left(x_{1}\right) \ldots \phi\left(x_{l}\right)\right)\right| a^{\dagger}\left(\mathbf{p}_{\mathbf{1}}\right) \ldots a^{\dagger}\left(\mathbf{p}_{\mathbf{n}}\right)|0\rangle$
*Wick's theorem enables decomposing generic $\langle 0| T\left(\phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)|0\rangle\right.$ into products of propagators $\langle 0| T\left(\phi\left(x_{i}\right) \phi\left(x_{j}\right)\right)|0\rangle$ e.g. $\langle 0| T\left(\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)|0\rangle=G_{F}\left(x_{1}-x_{2}\right) G_{F}\left(x_{3}-x_{4}\right)+G_{F}\left(x_{1}-x_{3}\right) G_{F}\left(x_{2}-x_{4}\right)+G_{F}\left(x_{1}-x_{4}\right) G_{F}\left(x_{2}-x_{3}\right)\right.$

S-matrix and Feynman rules

*. Dyson expansion of the S operator $S=\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \int d^{4} x_{1} \ldots \int d^{4} x_{n} T\left(\mathscr{H}_{\text {in }}\right.$
with $\mathscr{H}_{\text {int }}$ the interaction part of the Hamiltonian density in the interac
\Rightarrow calculation of $\left\langle p_{1}^{\prime}, \ldots, p_{m}^{\prime}\right| S\left|p_{1}, \ldots, p_{n}\right\rangle$ involves time-ordered

\rightarrow consider e.g. $\langle 0| a\left(\mathbf{p}_{\mathbf{1}}^{\prime}\right) \ldots a\left(\mathbf{p}_{\mathbf{m}}^{\prime}\right)\left|T\left(\phi\left(x_{1}\right) \ldots \phi\left(x_{l}\right)\right)\right| a^{\dagger}\left(\mathbf{p}_{\mathbf{1}}\right) \ldots a\left(\mathbf{p o n}_{\mathbf{n}}\right) \mid ण$
*Wick's theorem enables decomposing generic $\langle 0| T\left(\phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)|0\rangle\right.$ into products of propagators $\langle 0| T\left(\phi\left(x_{i}\right) \phi\left(x_{j}\right)\right)|0\rangle$ e.g. $\langle 0| T\left(\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)|0\rangle=G_{F}\left(x_{1}-x_{2}\right) G_{F}\left(x_{3}-x_{4}\right)+G_{F}\left(x_{1}-x_{3}\right) G_{F}\left(x_{2}-x_{4}\right)+G_{F}\left(x_{1}-x_{4}\right) G_{F}\left(x_{2}-x_{3}\right)\right.$

S-matrix and Feynman rules

\because Dyson expansion of the S operator $S=\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \int d^{4} x_{1} \ldots \int d^{4} x_{n} T\left(\mathscr{H}_{\text {in }}\right.$ with $\mathscr{H}_{\text {int }}$ the interaction part of the Hamiltonian density in the interac
\Rightarrow calculation of $\left\langle p_{1}^{\prime}, \ldots, p_{m}^{\prime}\right| S\left|p_{1}, \ldots, p_{n}\right\rangle$ involves time-ordered

\rightarrow consider e.g. $\langle 0| a\left(\mathbf{p}_{\mathbf{1}}^{\prime}\right) \ldots a\left(\mathbf{p}_{\mathbf{m}}^{\prime}\right)\left|T\left(\phi\left(x_{1}\right) \ldots \phi\left(x_{l}\right)\right)\right| a^{\dagger}\left(\mathbf{p}_{\mathbf{1}}\right) \ldots u\left(\mathbf{p n}_{\mathbf{n}}\right)$
$\%$ Wick's theorem enables decomposing generic $\langle 0| T\left(\phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)|0\rangle\right.$ into products of propagators $\langle 0| T\left(\phi\left(x_{i}\right) \phi\left(x_{j}\right)\right)|0\rangle$ e.g. $\langle 0| T\left(\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)|0\rangle=G_{F}\left(x_{1}-x_{2}\right) G_{F}\left(x_{3}-x_{4}\right)+G_{F}\left(x_{1}-x_{3}\right) G_{F}\left(x_{2}-x_{4}\right)+G_{F}\left(x_{1}-x_{4}\right) G_{F}\left(x_{2}-x_{3}\right)\right.$
\therefore In reality, need to be more careful as e.g. vacuum of the theory also affected by interactions
$\therefore \rightarrow$ Lehmann-Symanzik-Zimmerman formula relates $\left\langle p_{1}^{\prime}, \ldots, p_{m}^{\prime}\right| S\left|p_{1}, \ldots, p_{n}\right\rangle$ with $\langle 0| T\left(\phi\left(x_{1}\right) \ldots \phi\left(x_{m}\right) \phi\left(y_{1}\right) \phi \ldots\left(y_{n}\right)|0\rangle\right.$
$\%$ The resulting expressions for the transition amplitudes can be given a graphical representation as building blocks of the diagrams depicting the process \rightarrow Feynman rules

Feynman rules, ϕ^{4} theory

$$
\frac{(-i \lambda)^{2}}{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{1}{\left(p^{2}-m^{2}+i \epsilon\right)} \frac{1}{\left(\left(p+p_{1}-p_{3}\right)^{2}-m^{2}+i \epsilon\right)}
$$

Guiding principles

* Symmetry principle
\% gauge invariance but also Lorentz and CPT invariance
* Unitarity (conservation of probability)
\% Renormalisability (finite predictions)
\because Correspondance to already existing, well-tested theories: QED, Fermi theory,..
* Minimality: no unnecessary fields or interactions other than those needed to explain observation

```
C
```



```
    *)
```



```
    *)
    +g\mp@subsup{m}{W}{}\mp@subsup{W}{}{+}+\mp@subsup{\mu}{~}{-}
```



```
    +i\frac{g}{2\sqrt{}{2}}\frac{m&}{\mp@subsup{m}{W}{\sigma}}[-\mp@subsup{\phi}{}{+}(\mp@subsup{v}{}{\sigma}(1+\mp@subsup{\gamma}{}{5})\mp@subsup{e}{}{\sigma})+\mp@subsup{\phi}{}{\sigma}
```



```
    -\frac{1}{2}g\mp@subsup{m}{W}{[}[\mp@subsup{X}{}{+}\mp@subsup{X}{}{+}H+\mp@subsup{X}{}{-}\mp@subsup{X}{}{-}H+\frac{1}{\mp@subsup{c}{W}{2}}\mp@subsup{X}{}{0}\mp@subsup{X}{}{0}\mp@subsup{H}{H}{}]
```


Construction tools: groups

* Mathematical language of symmetry is group theory
* A group G is a set of elements g_{i} with a multiplication law

$$
g_{j} \cdot g_{k} \in G
$$

with a unity, an inverse and associativeness.

* Example: $\mathrm{U}(\mathrm{N})$ consisting of of NxN unitary matrices $U U^{\dagger}=U^{\dagger} U=1$
* Special group: elements are matrices with determinant $=1$
* Example: unitary special groups $\mathrm{SU}(\mathrm{N})$
$\%$ Abelian groups: elements obey $g_{j} \cdot g_{k}=g_{k} \cdot g_{j}$
* Example: unitary group $\mathrm{U}(1)$ consisting of a set of phase factors $e^{i \alpha}$
\therefore Non-abelian groups: $g_{j} \cdot g_{k} \neq g_{k} \cdot g_{j}$
* Example: $\mathrm{U}(\mathrm{N}), \mathrm{SU}(\mathrm{N}), \ldots$
\therefore Direct product $G \times H$ of two groups G and H, $\left[g_{i}, h_{j}\right]=0$
has a multiplication law for elements (g_{i}, h_{j})

$$
\left(g_{k}, h_{l}\right) \cdot\left(g_{m}, h_{n}\right)=\left(g_{k} \cdot g_{m}, h_{l} \cdot h_{n}\right)
$$

Construction tools: Lie groups

\because A general gauge symmetry group G is a compact Lie group

$$
g\left(\alpha^{1}, \ldots, \alpha^{k}, \ldots\right) \in G \quad g(\boldsymbol{\alpha})=\exp \left(i \alpha^{k} T^{k}\right)
$$

$$
\alpha^{k}=\alpha^{k}(x) \in \mathbb{R} \quad T^{k}=\text { Hermitian generators of the group } \quad \text { Lie algebra: }\left[T^{i}, T^{j}\right]=i f^{i j k} T^{k}
$$

$$
\operatorname{Tr}\left[T^{i} T^{j}\right] \equiv \delta_{i j} / 2 \quad \text { structure constants: } f^{i j k}=0 \text { for abelian groups, } f^{i j k} \neq 0 \text { for non-abelian groups }
$$

\because Example: $\mathrm{SU}(2) \quad g\left(\alpha^{1}, \alpha^{2}, \alpha^{3}\right)=\exp \left[i \alpha^{k} T^{k}\right] \quad k=1,2,3$

$$
f^{i j k}=\epsilon_{i j k} \quad T^{1}=\frac{1}{2}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad T^{2}=\frac{1}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad T^{3}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad(\text { Pauli matrices } / 2)
$$

$\div \mathrm{SU}(\mathrm{N})$ has $N^{2}-1$ linearly independent generators which are traceless hermitian matrices

Construction tools: group representations

$\%$ Representation of a group is a special realisation of the multiplication law. Set of matrices $\left\{R\left(g_{i}\right)\right\}$ such that if $g_{i} \cdot g_{j}=g_{k}$ then $R\left(g_{i}\right) R\left(g_{j}\right)=R\left(g_{k}\right)$
\because Fundamental representation with dimension N
\% unitary NxN matrices
$\therefore \mathrm{N}^{2}-1$ generators T^{k}
\% fermion transformations in the SM

* Adjoint representation with dimension $\mathrm{N}^{2}-1$
$\%$ unitary $\left(\mathrm{N}^{2}-1\right) \mathrm{x}\left(\mathrm{N}^{2}-1\right)$ matrices
$\because \mathrm{N}^{2}-1$ generators $\left(T_{a d j}^{k}\right)_{i j}=-i f_{k i j}$
\% gauge boson transformations in the SM
Examples

$$
\because \mathrm{SU}(2): 3 \text { generators, } f^{i j k}=\epsilon_{i j k}
$$

* SU(3): 8 generators

$$
\begin{aligned}
& \text { fundamental rep: } T^{k}=\sigma^{k} / 2 \quad \text { (Pauli matrices/2) } \\
& \text { adjoint rep: }\left(T_{a d j}^{k}\right)_{i j}=-i f_{k i j}=-i \epsilon_{k i j} \\
& \text { fundamental rep: } T^{k}=\lambda^{k} / 2 \quad \text { (Gell-Mann matrices/2) } \\
& \text { adjoint rep: }\left(T_{a d j}^{k}\right)_{i j}=-i f_{k i j}
\end{aligned}
$$

The gauge paradigm: QED

\therefore The free Dirac field Lagrangian

$$
\mathscr{L}_{\text {Dirac }}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi
$$

is invariant under global phase $\mathrm{U}(1)$ transformations

$$
\psi \rightarrow e^{i \alpha} \psi \quad \bar{\psi} \rightarrow e^{-i \alpha} \bar{\psi} \quad\left(\alpha=\text { constant phase } \quad \bar{\psi}=\psi^{\dagger} \gamma^{0}\right)
$$

* Under local phase ("gauge") $\mathrm{U}(1)$ transformations

$$
\psi \rightarrow e^{i \alpha(x)} \psi, \quad \bar{\psi} \rightarrow e^{-i \alpha(x)} \bar{\psi} \quad \quad \partial_{\mu} \psi(x) \rightarrow e^{i \alpha(x)} \partial_{\mu} \psi(x)+i e^{i \alpha(x)} \partial_{\mu} \alpha(x) \psi(x)
$$

\rightarrow introduce covariant derivative with the transformation rule $\quad D_{\mu} \psi(x) \rightarrow e^{i \alpha(x)} D_{\mu} \psi(x)$
so that

$$
\mathscr{L}=\bar{\psi}(x)\left(i \gamma^{\mu} D_{\mu}-m\right) \psi(x) \quad \text { is invariant }
$$

fulfilled by $\quad D_{\mu} \equiv \partial_{\mu}+i g A_{\mu}(x) \quad$ with a new vector field $A_{\mu}(x)$ transforming as $A_{\mu} \rightarrow A_{\mu}-\frac{1}{g} \partial_{\mu} \alpha(x)$

The gauge paradigm: QED (2)

$\%$

$$
\begin{array}{r}
\mathscr{L}=\bar{\psi}(x)\left(i \gamma^{\mu} D_{\mu}-m\right) \psi(x) \quad \text { is invariant with } D_{\mu}=\partial_{\mu}+i g A_{\mu}(x) \\
\mathscr{L}=\bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)-g \bar{\psi}(x) \gamma^{\mu} \psi(x) A_{\mu}(x)
\end{array}
$$

interaction piece of the fermion field with a gauge vector (photon) field with
g the electric charge of the electron

* Full QED Lagrangian obtained by adding the Maxwell Lagrangian for a vector field $A_{\mu}(x)$

$$
\mathscr{L}_{\mathrm{QED}}=\bar{\psi}(x)\left(i \gamma^{\mu} D_{\mu}-m\right) \psi(x)-\frac{1}{4} F^{\mu \nu}(x) F_{\mu \nu}(x)
$$

where $F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}$ is also invariant under the local phase transformation
\therefore Since $A_{\mu} A^{\mu}$ not gauge invariant, the term is not allowed \rightarrow massless photon

The gauge paradigm: QED (2)

$\%$

$$
\mathscr{L}=\bar{\psi}(x)\left(i \gamma^{\mu} D_{\mu}-m\right) \psi(x) \quad \text { is invariant with } D_{\mu}=\partial_{\mu}+i g A_{\mu}(x)
$$

$$
\mathscr{L}=\bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)-g \bar{\psi}(x) \gamma^{\mu} \psi(x) A_{\mu}(x)
$$

interaction piece of the fermion field with a gauge vector (photon) field with
g the electric charge of the electron
\because Full QED Lagrangian obtained by adding the Maxwell Lagrangian for a vector field $A_{\mu}(x)$

$$
\mathscr{L}_{\mathrm{QED}}=\bar{\psi}(x)\left(i \gamma^{\mu} D_{\mu}-m\right) \psi(x)-\frac{1}{4} F^{\mu \nu}
$$

where $F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}$ is also invariant under the local ph
\because Since $A_{\mu} A^{\mu}$ not gauge invariant, the term is not allowed $\rightarrow \mathrm{ma}$
Gauge principle: invariance of theory under local symmetry
Promoting global symmetry to local leads to an interacting theory

Non-abelian gauge theories

\therefore Consider now a general case when the local symmetry transformation of fields form a non-abelian group SU(N)

$$
\psi(x) \rightarrow U(\alpha(x)) \psi(x) \quad \text { with } \quad U(\alpha(x))=\exp \left[i g \alpha^{k}(x) T^{k}\right] \quad k=1, \ldots, N^{2}-1
$$

$\therefore T^{k}$ are the generators of the group $\mathrm{SU}(\mathrm{N})$ obeying the group algebra $\left[T^{i}, T^{j}\right]=i f^{i j k} T^{k}$
\therefore In analogy to QED $\quad \partial_{\mu} \psi(x) \rightarrow \exp \left[i g \alpha^{k}(x) T^{k}\right] \partial_{\mu} \psi(x)+i g\left(\partial_{\mu} \alpha^{k}(x)\right) T^{k} \exp \left[i g \alpha^{k}(x) T^{k}\right] \psi(x)$ and the Lagrangian $\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi$ is not invariant under the transformation

$$
\begin{array}{ll}
\therefore \text { Way out: introduce } & \text { vector gauge fields } W^{\mu}=W^{\mu, 1} T^{1}+W^{\mu, 2} T^{2}+\ldots=W^{\mu, k} T^{k} \\
& \text { covariant derivative } \quad D^{\mu} \psi \equiv\left(\partial^{\mu}+i g W^{\mu}\right) \psi
\end{array}
$$

\because Requesting gauge invariance of $\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi$ means $D^{\mu} \psi \rightarrow U D^{\mu} \psi$ and $D^{\mu} \rightarrow U D^{\mu} U^{-1}$
\% It follows

$$
W^{\mu} \rightarrow U W^{\mu} U^{-1}-\frac{i}{g} U\left(\partial^{\mu} U^{-1}\right)
$$

Non-abelian gauge theories

\therefore Consider now a general case when the local symmetry transformation of fields form a non-abelian group SU(N)

$$
\psi(x) \rightarrow U(\alpha(x)) \psi(x) \quad \text { with } \quad U(\alpha(x))=\exp \left[i g \alpha^{k}(x) T^{k}\right] \quad k=1, \ldots, N^{2}-1
$$

$\therefore T^{k}$ are the generators of the group $\mathrm{SU}(\mathrm{N})$ obeying the group algebra $\left[T^{i}, T^{j}\right]=i f^{i j k} T^{k}$
\therefore In analogy to QED $\quad \partial_{\mu} \psi(x) \rightarrow \exp \left[i g \alpha^{k}(x) T^{k}\right] \partial_{\mu} \psi(x)+i g\left(\partial_{\mu} \alpha^{k}(x)\right) T^{k} \exp \left[i g \alpha^{k}(x) T^{k}\right] \psi(x)$ and the Lagrangian $\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi$ is not invariant under the transformation
$\begin{array}{ll}\therefore \text { Way out: introduce } & \begin{array}{l}\text { vector gauge fields } \\ \\ \text { covariant derivative }\end{array} W^{\mu}=W^{\mu, 1} T^{1}+W^{\mu, 2} T^{2}+\ldots=\left(\partial^{\mu}+i g W^{\mu}\right) \psi\end{array}$
\because Requesting gauge invariance of $\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi$ means $D^{\mu} \psi \rightarrow U D^{\mu} \psi$ and $D^{\mu} \rightarrow U D^{\mu} U^{-1}$
\% It follows

$$
W^{\mu} \rightarrow U W^{\mu} U^{-1}-\frac{i}{g} U\left(\partial^{\mu} U^{-1}\right)
$$

Non-abelian gauge theories (2)

$\%$ Transformations: $\quad \psi(x) \rightarrow \exp \left[\operatorname{ig} \alpha^{k}(x) T^{k}\right] \psi(x)$

$$
D^{\mu} \rightarrow U D^{\mu} U^{-1}
$$

$$
W^{\mu} \rightarrow U W^{\mu} U^{-1}-\frac{i}{g} U\left(\partial^{\mu} U^{-1}\right)
$$

Generalisation of the QED field strength tensor $F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}=-\frac{i}{e}\left[D^{\mu}, D^{\nu}\right]$
to $\quad W^{\mu \nu} \equiv-\frac{i}{g}\left[D^{\mu}, D^{\nu}\right]$
Since $D^{\mu} \psi=\left(\partial^{\mu}+i g W^{\mu}\right) \psi \quad$ it follows $W^{\mu \nu}=\partial^{\mu} W^{\nu}-\partial^{\nu} W^{\mu}+i g\left[W^{\mu}, W^{\nu}\right]$
and from $W^{\mu}=W^{\mu, k} T^{k} \quad \Rightarrow W^{\mu \nu, k}=\partial^{\mu} W^{\nu, k}-\partial^{\nu} W^{\mu, k}-g f^{i j k} W^{\mu, i} W^{\nu, j}$
\because Transformation of the field tensor: $\quad W^{\mu \nu} \rightarrow U W^{\mu \nu} U^{-1}$
The kinetic term $-\frac{1}{4} W_{\mu \nu}^{k} W^{\mu \nu, k}=-\frac{1}{2} \operatorname{Tr}\left[W_{\mu \nu} W^{\mu \nu}\right]$ is then gauge invariant and hence the Lagrangian

$$
\mathscr{L}=\bar{\psi}(i D-m) \psi-\frac{1}{2} \operatorname{Tr}\left[W_{\mu \nu} W^{\mu \nu}\right] \quad \text { is also gauge invariant }
$$

General features of non-abelian gauge theories

* $N^{2}-1$ generators of the $\mathrm{SU}(\mathrm{N})$ symmetry group $\rightarrow N^{2}-1$ gauge fields
\% Similarly to QED, the interaction of gauge fields with fermion fields is given by the $-g \bar{\psi} \gamma^{\mu} T^{k} W_{\mu}^{k} \psi$ term in the Lagrangian
\% New types of interaction in comparison with an abelian theory: from- $\frac{1}{4} W_{\mu \nu}^{k} W^{\mu \nu, k}$ with $W^{\mu \nu, k}=\partial^{\mu} W^{\nu, k}-\partial^{\nu} W^{\mu, k}-g f^{i j k} W^{\mu, i} W^{\nu, j}$ follow terms that are cubic and quartic in gauge boson fields \rightarrow gauge bosons interact with each other
\% Gauge bosons are massless since the term $W_{\mu}^{k} W^{\mu, k}$ is not invariant under local gauge transformations
\because Gauge invariance fixes the strength of the gauge boson self-interactions and interactions with the fermion fields in terms of a single parameter g

QCD Lagrangian

\rightarrow see lectures by Xu Feng

* The kinetic part for the gluon field

$$
\mathscr{L}_{G}=-\frac{1}{4} F_{\mu \nu}^{k} F^{\mu \nu, k} \quad F^{\mu \nu, k}=\partial^{\mu} A^{\nu, k}-\partial^{\nu} A^{\mu, k}-g_{s} f^{i j k} A^{\mu, i} A^{\nu, j}
$$

carries information about triple and quartic gluon self-interactions.
\% Altogether, summing over flavours

$$
\begin{aligned}
\mathscr{L}_{Q C D}=\sum_{f} & \bar{\psi}^{(f)}\left(i \gamma^{\mu} \partial_{\mu}-m_{f}\right) \psi^{(f)} \\
& -\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2} \\
& -g_{s} \bar{\psi}(f) \gamma^{\mu} T^{a} A_{\mu}^{a} \psi(f) \\
& -\frac{1}{2} g_{s}\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right) f_{a b c} A^{\mu, b} A^{\nu, c} \\
& -\frac{1}{4} g_{s}^{2} f_{a b c} A^{\mu, b} A^{\nu, c} f_{a d e} A_{\mu}^{d} A_{\nu}^{e}
\end{aligned}
$$

Feynman rules
\longrightarrow

$$
\cdots \infty m
$$

QCD Lagrangian

\rightarrow see lectures by Xu Feng

* The kinetic part for the gluon field

$$
\mathscr{L}_{G}=-\frac{1}{4} F_{\mu \nu}^{k} F^{\mu \nu, k} \quad F^{\mu \nu, k}=\partial^{\mu} A^{\nu, k}-\partial^{\nu} A^{\mu, k}-g_{s} f^{i j k} A^{\mu, i} A^{\nu, j}
$$

carries information about triple and quartic gluon self-interactions.

* Altogether, summing over flavours

Feynman rules

$$
\mathscr{L}_{Q C D}=\left[\begin{array}{l}
\sum_{f} \bar{\psi}^{(f)}\left(i \gamma^{\mu} \partial_{\mu}-m_{f}\right) \psi^{(f)} \\
-\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2} \\
-g_{s} \bar{\psi}(f) \gamma^{\mu} T^{a} A_{\mu}^{a} \psi(f) \\
-\frac{1}{2} g_{s}\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right) f_{a b c} A^{\mu, b} A^{\nu, c} \\
-\frac{1}{4} g_{s}^{2} f_{a b c} A^{\mu, b} A^{\nu, c} f_{a d e} A_{\mu}^{d} A_{\nu}^{e}
\end{array}\right.
$$

QED-like

[^0]: LHCB-FIGURE-2022-003

