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SM on a mug

✤ Lagrangian before SSB
Summation over 

 
fields implicitly assumed

SU(3), SU(2)L, U(1)Y



Neutrinos

✤ Neutrinos are known to oscillate, which implies that (at least two) have (tiny) mass

✤ Canonical SM formulation with massless neutrinos clearly fails here 

✤ However,  simple extensions the SM that could yield neutrino masses  have been proposed

✤ Neutrino as a Dirac particle (Dirac spinors)

✤ SU(2) singlet RH neutrinos , mimicking the construction in the quark sector → Dirac mass term, but note   sterile 
neutrino (only gravity)

✤ neutrinos get mass through EW SSB, would require neutrino Yukawa couplings of (at least)  4-5 orders of magnitude smaller 
than electron Yukawa coupling

✤ Neutrino as a Majorana particle (Majorana spinor -> Dirac spinor for particle = antiparticle)

✤ Observed  : LH component of a light Majorana neutrino with small mass generated by a seesaw mechanism?

νR YνR
= 0 →

νL

➜ see lectures by S. Lavignac



Quantization of a spontaneously broken gauge 
theory (1)
✤ Abelian Higgs model:

ϕ(x) → ϕ′￼(x) = e(−iξ(x)/v)ϕ(x) =
1

2
(v + ρ(x))

Aμ(x) → A′￼μ(x) = Aμ(x) −
1
gv

∂μξ(x)

Unitary gauge

ℒ = −
1
4

FμνFμν +
1
2

(∂μρ)2 +
1
2

g2v2AμAμ − μ2ρ2 +
1
2

g2AμAμρ2 + g2vAμAμρ − λvμρ3 −
λ
4

ρ4 +
1
4

μ2v2

Lagrangian in this gauge:

Advantage: physical fields! 

Propagator of the  field Aμ
i (−gμν + kμkν /m2

A)
k2 − m2

A + iϵ

behaves as  as ;  compare with  for massless photon 
1

m2
A

k → ∞
1
k2What about other gauges?

ϕ(x) =
1

2
(v + ρ(x)) eiξ(x)/v =

1

2
(v + ρ(x) + iξ(x) + …)

Higgs Goldstone



Quantization of a spontaneously broken gauge 
theory (2)
✤ Abelian Higgs model: ϕ(x) =

1

2
(v + ρ(x)) eiπ(x)/v =

1

2
(v + ρ(x) + iπ(x) + …)

(Dμϕ)*(Dμϕ) =
1
2

(∂μρ)2 +
1
2

(∂μπ)2 +
1
2

g2v2AμAμ + gvAμ∂μπ + interaction terms

Eliminate the kinetic mixing term  by gauge fixing gv Aμ∂μπ (MA = gv) ℒGF = −
1
2ζ

(∂μAa
μ − ξMAπ)2

Propagator of the  field Aμ i (−gμν + (1 − ξ)kμkν /(k2 − ξm2
A))

k2 − m2
A + iϵ behaves as  as 

1
k2

k → ∞

Propagator of the  field π
i

k2 − ξm2
A + iϵ

 gauges 
(manifestly renormalizable)

Rξ
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Aμ π

ξ → ∞
i (−gμν + kμkν /m2

A)
k2 − m2

A + iϵ
decoupled

ξ = 1
−igμν

k2 − m2
A + iϵ

−i
k2 − m2

A + iϵ  gauges 
(manifestly renormalizable)

Rξ
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Quantization of a spontaneously broken gauge 
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Analogous treatment for non-abelian gauge theories, but 
apart from unphysical Goldstone bosons also unphysical 

ghosts introduced



Counting parameters

*though recollections may vary (one can additionally include non-canonical parameters, e.g. the  CP-violating angle or parameters 
of the neutrino sector bringing it up to 26 free parameters)

ΘQCD

✤ The Standard Model has 18 free parameters*

✤ 3 couplings 

✤ 2 parameters of the Higgs potential 

✤ 9 (6 quark + 3 lepton) Yukawa couplings 

✤ 4 parameters of the CKM matrix 

 

g, g′￼, gs

μ, λ

yf

VCKM



Counting parameters

✤ The Standard Model has 18 free parameters*

✤ 3 couplings 

✤ 2 parameters of the Higgs potential 

✤ 9 (6 quark + 3 lepton) Yukawa couplings 

✤ 4 parameters of the CKM matrix 

 

g, g′￼, gs

μ, λ

yf

VCKM

✤ Using relations between the parameters a more practical list can 
be obtained, e.g.:

✤ 2 coupling constants  and  

✤
Fermi constant 

✤ 2 masses  and 

✤ 9 fermion masses 

✤ 4 parameters of the CKM matrix 

α =
e2

4π
αs =

g2
s

4π

GF =
g2

4 2M2
W

MZ MH

mf

VCKM



SM input parameters

✤ All parameters of the SM have been experimentally 
measured (last unmeasured was )

✤ Consult Particle Data Group for the most up-to-date values

✤      
 

 GeV-2

✤  GeV 
 GeV

✤ ….

✤ With input parameters known, one can make theoretical 
predictions for any SM observable! 

MH

α−1 = 137.035999084(21)
αs(MZ) = 0.1179(9)
GF = 1.1663788(6) × 10−5

MZ = 91.1876 ± 0.0021
MH = 125.25 ± 0.17

https://pdg.lbl.gov



✤ The running of couplings  →  depending on the strength of the coupling different methods applicable 

✤ expansion in the coupling constant(s) in the perturbative regime 

✤ lattice gauge theory (e.g.) in the non-perturbative regime 

✤ Feasibility of performing calculations in the sense of obtaining finite results (renormalisability)→  depends on the theory 

✤ Problem (in perturbation theory): calculations of quantum loop corrections involve integration over unconstrained 
momenta of the virtual particle(s) in the loop(s) 
 
 
 
 
The integration can yield 
→ UV singularities when                       treated by the renormalisation program 
     IR   singularities when                         cancel against IR singularities from real emission diagrams 

k → ∞
k → 0

The trouble with theoretical predictions

e.g.   @ 1 loope+e− → μ+μ−



UV singularities and how to cure them

1. Acceptance. UV singularities can appear in the intermediate stages of calculations.

2. Diagnosis. Infinities are given mathematical meaning. Achieved by introducing a regulator parameter in the expressions for the 
loops. The regulator makes the integrals well-defined, apart from a limit value of the regulator, for which the integral is singular. 
                                                                                                                                                                                           → Regularisation 
Most often used: dimensional regularisation (DR).  

✤
 Integrals are calculated in  dimensions.               

 to keep the action dimensionless,   is an arbitrary scale

✤
Singularities manifest as poles                        

✤ DR preserves gauge symmetry and can be used for regularisation of both, UV and IR singularities.

3. Treatment. The singularities are absorbed in the redefined parameters and fields of the theory. A finite number of redefinitions has 
to yield well-defined results for all observables at any order of perturbation theory.                                         → Renormalisation

d ≠ 4 ∫ d4k → ∫ ddk

g2 → g2μ4−d μ

1
(4 − d)n



Example

 

                                                                                     logarithmic singularity

                                                                                                                            large  k

Dimensional regularisation  ( ) 
 

                                       

 
                                                                     
 
                                                                                                       

∝ ∫ d4k
Tr[…]

(k2 − m2)((p − k)2 − m2)
∼ ∫

d4k
k4

∼ ∫
dk
k

d = 4 − 2ϵ

∫
ddk
k4

→ ∫ dΩd ∫
∞

K
dk

kd−1

k4
=

(2π)2−ϵ

Γ(2 − ϵ) (−
1
2ϵ ) [ 1

k2ϵ
k=∞

−
1

k2ϵ
k=K ] ∝

1
2ϵ

− log(K) + 𝒪(ϵ)

308 Quantum corrections

it is not clear that we would be able to make any meaningful predictions from such
a theory.

To illustrate the remarks above let us consider quantum electrodynamics, the
relativistic quantum theory of photons and electrons. Its Lagrangian equals

L = − 1
4 (∂µAν − ∂νAµ)

2 − ψ̄(/∂ +m)ψ − ieAµψ̄γ
µψ − 1

2 (λ∂
µAµ)

2 , (9.30)

where the electron charge is equal to −e. Note that we have included the gauge-
fixing term − 1

2 (λ∂
µAµ)2 discussed in section 4.2, with λ an arbitrary parameter.

The propagators for the photon and the electron have already been given in table
5.1 and in (4.38) and (5.28).

q + k

q

µ ν

!Fig. 9.2 The one-loop vacuum polarization graph in quantum electrodynamics.

Higher-order corrections to these propagators arise from vacuum polarization and
self-energy graphs, respectively. The corresponding one-loop diagrams are shown in
figs. 9.2 and 9.3. In both these graphs there are two vertices and two propagators for
the internal lines, so that the factors i(2π)4 cancel. The expression corresponding
to the vacuum polarization diagram of fig. 9.2 can be written as

Πµν(k) =
ie2

(2π)4

∫
d4q Tr

[
γµ

1

i/q +m
γν

1

i(/q + /k) +m

]
, (9.31)

where we have included a minus sign for the closed fermion loop, and included the
standard normalization factor [−i(2π)4]−1 for self-energy diagrams as specified in
(2.72).

The self-energy graph shown in fig. 9.3 gives the expression

Σ(p) =
−ie2

(2π)4

∫
d4q γµ

1

i(/p+ /q) +m
γν
(
ηµν − (1− λ−2)

qµqν

q2

) 1

q2
, (9.32)

where we have absorbed the same normalization factor [−i(2π)4]−1.

p p + q p

!Fig. 9.3 The one-loop self-energy graph in quantum electrodynamics.

We should also include the loop correction to the vertex function which is based
on the diagram in fig. 9.4. The amplitude for this triangle graph involves three

k

k-p

p



QED renormalisation 

✤ Reinterpret the QED Lagrangian                

as written in terms of bare (unrenormalised) parameters  and fields  and relate 
 
                                  

✤ With  and  obtain  Lagrangian of the renormalised perturbation theory 
 

                                                              

                                                                                                                                                                        
                                                                                                                                   counterterms

              → additional  Feynman rules for the counterterms, e.g.    

                                                                                                                                            

✤ Fix renormalisation conditions defining  ‘s                    

ℒ = −
1
4

(∂μAν − ∂νAμ)2 + ψ̄ (iγμ∂μ − e γμAμ − m) ψ

e0, m0 ψ0, A0

ψ0 = Z2 ψ R A0
μ = Z3 AR

μ m0 = ZmmR e0 = ZeeR

Z1 ≡ ZeZ2 Z3 Zi = 1 + (Zi − 1)

ℒ = −
1
4

(∂μAR
ν − ∂νAR

μ )2 + ψ̄R (iγμ∂μ − eR γμAR
μ − mR) ψ R −

1
4

(Z3 − 1)(∂μAR
ν − ∂νAR

μ )2 + i(Z2 − 1)ψ̄Rγμ∂μψ R − eR (Z1 − 1)ψ̄RγμAμψ R

−[(Zm − 1) + (Z2 − 1)] mRψ̄Rψ R

314 Quantum corrections

four such terms:

∆L = ∆L1 +∆L2 +∆L3 +∆L4 . (9.42)

The first term, which cancels the divergence of the vacuum polarization diagram,
takes the form

∆L1 = −
e2

24π2
(∂µAν − ∂νAµ)

2
[1
ε
+ 1

2γE −
1
2 ln 4π

]
, (9.43)

where we have included some finite terms originating from (9.41). Obviously there
is always an ambiguity regarding possible finite terms that one may include into
these counterterms. Now (9.43) gives rise to a new two-photon vertex contribution
shown in fig. 9.5, which takes the form

i(2π)4
− e2

6π2

(
k2ηµν − kµkν

) [1
ε
+ 1

2γE −
1
2 ln 4π

]
, (9.44)

where we included the combinatorial factor 4. This vertex will contribute to the vac-
uum polarization, which must include the standard normalization factor [−i(2π)4]−1,
so that we obtain

∆Πµν(k) =
e2

6π2
(k2ηµν − kµkν)

[1
ε
+ 1

2γE −
1
2 ln 4π

]
. (9.45)

This contribution cancels a similar infinite term in (9.35, 9.36).

∆L1 :

∆L2 :

∆L3 :

∆L4 :

!Fig. 9.5 Diagrams corresponding to the one-loop counterterms (9.43), (9.46), (9.48) and
(9.50), respectively.

The second counterterm is equal to

∆L2 = −
e2

8π2
m(3 + λ−2) ψ̄ψ

[1
ε
+ 1

2γE −
1
2 ln 4π

]
, (9.46)

and gives rise to a vertex shown in fig. 9.5 that contributes to the electron self-energy
function A(p2),

∆A(p2) =
e2

8π2
(3 + λ−2)

[1
ε
+ 1

2γE −
1
2 ln 4π

]
. (9.47)

Zi

−i(Z3 − 1) (p2gμν − pμpν)

renormalisation constants Zi



Example ctnd.

  
 
 
       Counterterm contribution 
 
 
        Renormalisation condition                         

                                      where     is the sum of all 1PI contributions to the photon 2-point function 
 

Up to order                          hence                    

                                          finite result!

Π(0) = 0

−i(p2gμν − pμpν) Π(p2)

e2 Π(p2) = e2 Π2(p2) + (Z3 − 1) + … Z3 − 1 = −
e2

6π2 [ 1
ϵ

+
1
2

log ( μ̃2

m2 )]
⇒ Π(p2) =

e2

2π2 ∫
1

0
dx x (1 − x)log ( m2

m2 − p2x (1 − x) ) + …
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Higher-order corrections to these propagators arise from vacuum polarization and
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1
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1
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where we have included a minus sign for the closed fermion loop, and included the
standard normalization factor [−i(2π)4]−1 for self-energy diagrams as specified in
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The self-energy graph shown in fig. 9.3 gives the expression
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1
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where we have absorbed the same normalization factor [−i(2π)4]−1.
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!Fig. 9.3 The one-loop self-energy graph in quantum electrodynamics.

We should also include the loop correction to the vertex function which is based
on the diagram in fig. 9.4. The amplitude for this triangle graph involves three

= − i(p2gμν − pμpνe2) e2 Π2(p2) Π2(p2) =
1

2π2 ∫
1

0
dx x (1 − x)

2
ϵ

+ log ( μ̃2

m2 − p2x (1 − x) )
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!Fig. 9.5 Diagrams corresponding to the one-loop counterterms (9.43), (9.46), (9.48) and
(9.50), respectively.

The second counterterm is equal to

∆L2 = −
e2

8π2
m(3 + λ−2) ψ̄ψ

[1
ε
+ 1

2γE −
1
2 ln 4π

]
, (9.46)

and gives rise to a vertex shown in fig. 9.5 that contributes to the electron self-energy
function A(p2),

∆A(p2) =
e2

8π2
(3 + λ−2)

[1
ε
+ 1

2γE −
1
2 ln 4π

]
. (9.47)

−i(Z3 − 1) (p2gμν − pμpν)
μ̃2 = 4πe−γE μ2



Renormalisability (1)

✤ Renormalisable theory: all UV divergencies can be cancelled with a finite number of counterterms to any order in 
perturbation theory

✤ QED renormalisation program at 1 loop: 
 
 
 
                     
                                                                                                  

✤ Normalisation of the fields not observables, so can be rescaled. Normalisation of the parameters set by measured quantities.

✤ The principle of renormalisability is an essential condition for any viable physical theory →  observables are finite functions 
that can be in principle calculated in perturbation theory

✤ Renormalisation procedure introduces renormalisation scale  as an artefact of the regularisation prescription 

Z3 Z2, Zm Ze

μ
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Higher-order corrections to these propagators arise from vacuum polarization and
self-energy graphs, respectively. The corresponding one-loop diagrams are shown in
figs. 9.2 and 9.3. In both these graphs there are two vertices and two propagators for
the internal lines, so that the factors i(2π)4 cancel. The expression corresponding
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standard normalization factor [−i(2π)4]−1 for self-energy diagrams as specified in
(2.72).
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We should also include the loop correction to the vertex function which is based
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4 renormalisation conditions



✤ Although Weinberg and Salam speculated that their theory is renormalizable, a proof of renormalizability of Yang-Mills 
theories with SSB was delivered a few years later, in 1971, by t’Hooft and Veltman                                                                                   

✤                                            

Renormalisability (2)

(Nobel Prize 1999)



✤ Renormalised QED has proven to be spectacularly successful

✤ anomalous magnetic moment of the electron 

✤  
 
 
          calculated up to 5 loops in QED   
         
                   [Fan et al. Phys.Rev.Lett. 130 (2023) 7] 
                        agrees with the SM to 1 part in   
                                            

aexp
e = 1159652.18059(13) × 10−9
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✤ Although Weinberg and Salam speculated that their theory is renormalizable, a proof of renormalizability of Yang-Mills 
theories with SSB was delivered a few years later, in 1971, by t’Hooft and Veltman                                                                                   

                                           

Renormalisability (2)

(Nobel Prize 1999)



✤ Although Weinberg and Salam speculated that their theory is renormalizable, a proof of renormalizability of Yang-Mills 
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✤ Renormalised QED has proven to be spectacularly successful

✤ anomalous magnetic moment of the muon 

✤  
 
 
          calculated up to 5 loops in QED   
         
         
                            (world average 08’23) 
                                            

aQED
μ = 1165847.1893(10) × 10−9

aSM
μ = 1165918.100(430) × 10−9 aexp

μ = 1165920.591(221) × 10−9

Renormalisability (2)

(Nobel Prize 1999)

Muon g-2 Collaboration, August 2023
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Running coupling

✤ The renormalisation process and the measurable quantities must be independent of the arbitrary renormalisation scale → 
consequence: running coupling. Not being an observable, the coupling can depend on this scale.

✤ Consider a dimensionless observable , e.g. a ratio of two cross sections. If only one scale Q is relevant for this observable,  
then from dimensional analysis after renormalisation                    

✤  Independence of R on  implies 
 

                                                            

       With                                                                                     renormalisation group equation 

                                                                                                                                                                                                                             

R
R = R(Q2/μ2, α(μ2)) α = g2/(4π)

μ

μ2 d
dμ2

R(Q2/μ2, α(μ2)) = [μ2 ∂
∂μ2

+ μ2 ∂α
∂μ2

∂
∂α ] R(Q2/μ2, α(μ2)) = 0

β(α) ≡ μ2 ∂α
∂μ2

t ≡ log ( Q2

μ2 ) αμ ≡ α(μ2)

[−
∂
∂t

+ β(αμ)
∂

∂αμ ] R(et, αμ) = 0



Running coupling (2)

To solve                                                                                                                   (*) 

 
define (in an implicit way) a new function,  the running coupling , through the equation 

                                                                                                                                                                (**) 

 
By differentiating this equation wrt. t at fixed  and wrt.  at fixed t one finds  is a solution of (*) 
                                                                                         → entire scale dependence in R enters through  
 
Using          integration of (**) gives 
 

                                                                 

[−
∂
∂t

+ β(αμ)
∂

∂αμ ] R(et, αμ) = 0

α(Q2)

t = ∫
α(Q2)

αμ

dα
β(α)

αμ αμ R(1,α(Q2))
α(Q2)

β(α) = − α2b0 + …

t =
1
b0 ( 1

α(Q2)
−

1
αμ ) ⇒ α(Q2) =

α(μ2)
1 + α(μ2)b0 log(Q2/μ2)



Running coupling (3)

 In QED                  

                                           
In QCD 

 

     for             

bQED
0 = −

1
3π

α(Q2) =
α(μ2)

1 − α(μ2)
3π log(Q2/μ2)

bQCD
0 =

11CA − 2nf

12π
> 0 nf < 17 αs(Q2) =

αs(μ2)

1 +
αs(μ2)(33 − 2nf )

12π log(Q2/μ2)

asymptotic 
freedom 

infrared 
slavery

non-perturbative perturbative

confinement, hadronization

➜ see lectures by Xu Feng



Running of the SM parameters

SM gauge couplings                                                                 together with Higgs and Yukawa couplings 

Hint of  unification?

2 4 6 8 10 12 14 16 18 20

log10(µ/GeV )

0.0

0.2

0.4

0.6

0.8

1.0

g 1
,g

2
,g

s,
y t

,y
b,

∏
,µ

0
/T

eV

Mpl

g1

g2

gs

yt

yb

∏
µ0

2 4 6 8 10 12 14 16

log10(µ/GeV )

0.01

0.02

0.03

0.04

0.05

Æ
1
,Æ

2
,Æ

3

Æ1

Æ2

Æ3

arXiv:1601.08143



Anomalies

✤ Anomalies appear when a symmetry of a classical system is not preserved at the quantum level

✤ Noether’s theorem: continuous symmetries imply conserved currents

✤ Currents associated with  anomalous symmetries are not conserved  in QFT gauged symmetries must be anomaly free  
consistency check (global anomalies not problematic)

✤  In the SM, axial currents   receive non-zero corrections to  from one-loop triangle diagrams

✤ The anomaly comes with a factor , where  are the generators of the considered symmetries 
in the SM and the traces are over all LH or RH fields

✤ In the SM only U(1)-SU(3)-SU(3), U(1)-SU(2)-SU(2), U(1)-U(1)-U(1) anomalies contribute

→ →

JA
μ = ψ̄γμγ5Taψ ∂μJA

μ

Tr[Ta{Tb, Tc}]L − Tr[Ta{Tb, Tc}]R Ti



Anomalies (2)

✤
U(1)-SU(3)-SU(3), only quarks                                

✤
U(1)-SU(2)-SU(2), only doublets                           

✤
U(1)-U(1)-U(1)   all fermions                                    

3 [2 ( 1
3 ) +

2
3

−
4
3 ] = 0

2 [−1 + 3 ( 1
3 )] = 0

[2 (−1)3 − (−2)3 + 6 ( 1
3 )

3

− 3 (−
2
3 )

3

− 3 ( 4
3 )

3

] = 0

Y -1 -1 -2 1/3 1/3 4/3 -2/3
νL eL eR uL dL uR dR

✤ number of particles and their 
hypercharges conspire to cancel

✤ works within 1 generation

✤ anomaly cancellation provides a 
strong restriction on potential new 
particles

Tr[Ta{Tb, Tc}]L − Tr[Ta{Tb, Tc}]R



SM@LHC (1)

pp W Z t̄t t

t-chan

Wt H WW WZ ZZ t

s-chan

t̄tW t̄tZ

WWV

tot.

t̄tt̄t

340 µb�1

500 µb�1

80 µb�1

2 fb
�1

WH

ZH

total

VBF

VH

tt̄H

(⇥0.3)

WWW

WWZ

(⇥0.2)

10�2

10�1

1

101

102

103

104

105

106

1011

�
[p

b
]

Theory

LHC pp
p
s = 13.6 TeV

Data 29.0 � 31.4 fb
�1

LHC pp
p
s = 13 TeV

Data 3.2 � 140 fb
�1

LHC pp
p
s = 8 TeV

Data 20.2 � 20.3 fb
�1

LHC pp
p
s = 7 TeV

Data 4.5 � 4.6 fb
�1

LHC pp
p
s = 5 TeV

Data 0.255 � 0.3 fb
�1

Standard Model Total Production Cross Section Measurements Status: October 2023

ATLAS Preliminary

p
s = 5,7,8,13,13.6 TeV



SM@LHC (2)



EW tests over the years 

✤ LEP:  collider, in operation 1989-2000 

✤ 4 experiments (ALEPH, DELPHI, L3, OPAL)

✤  from 90 GeV to 209 GeV

✤ Two phases

✤ LEP1: Z physics

✤ LEP2: W physics, reaching the WW threshold and 
above

✤ largest and most powerful  collider to date

✤ SLC,  collider, in operation 1989-1998

✤  ~ 90 GeV , polarised beams

e+e−

s

e+e−

e+e−

s

✤ , in operation 1981-1990 

✤   =540, 630 GeV 

✤ discovery of W and Z bosons (UA1 &UA2)

✤ Tevatron,  collisions (1987-2011)

✤   =1.8, 1.96 TeV 

✤ top quark discovery,  mass measurement

✤  measurements

✤ LHC, pp collisions (2008 - )

✤ Higgs boson discovery

✤ …

Spp̄S

s

pp̄

s

MW



Testing the SM

✤ What can be tested?

✤ Theoretical predictions for observables: cross sections, differential distributions, decay widths,,…

✤ “Properties” of the theory

✤ built-in assumptions, e.g. number of generations

✤ existence of the particles appearing in the model and their properties 
      → most famous: Higgs boson but also top quark,  neutrino, and even earlier  W, Z bosons or b and c quarks,..

✤ existence of the interactions predicted by the model and their properties 
     →  e.g. Yukawa couplings, gauge boson interactions, gauge-fermion interactions

✤ running of the coupling

✤ …

✤ Overall consistency → global precision fits

τ



 e+e− → ff̄

✤  cross section 
 
 
 
 
at the Z resonance  

                        

✤ Partial width  

                                                                                                                                          

               and  at                    

                              

e+e− → f f̄

σ =
4πα
3s

1
16sin4θW cos4 θW

(ce
V

2 + ce
A

2)(c f
V

2 + c f
A

2)
s

(s − M2
Z)2 + (MZΓZ)2

Γf =
αMZ

12 sin2 θW cos2 θW
(c f

V
2 + c f

A
2) ΓZ = ∑

f

Γf

⇒ σ = 12π
ΓeΓf

M2
Z

s
(s − M2

Z)2 + (MZΓZ)2
s = MZ σ =

12π
m2

Z

ΓeΓf

Γ2
Z

Z −
ig

2 cos θW
γμ(cl

V − cl
Aγ5)

c f
V = T3 − 2ef sin2 θW

c f
A = T3



Z line shape

✤ Z resonance curve    
 

    with peak at 

✤ Resonance location gives , width of the curve gives , height  
gives  

The formula receives QED (and QCD if hadrons in the final state are 
considered) corrections,  most importantly from the QED initial state radiation

σ = 12π
ΓeΓf

M2
Z

s
(s − M2

Z)2 + (sΓZ /MZ)2
σpeak =

12π
m2

Z

ΓeΓf

Γ2
Z

MZ ΓZ σpeak
ΓeΓf

as measured by ALEPH

Test of  lepton 
 couplings’ universality ✤ Determination of  from forward-backward asymmetry 

(→ differential distributions)
c f

V, c f
A

Rl =
Γhad

Γl



Number of light neutrino generations

✤ The relation      
 
allows to determine the invisible partial width 
 
                              

✤ The number of neutrinos 
 

          

                                   ↑                ↑ 
                         from exp.    from SM

✤ Combined result from the four LEP experiments 
     
             

ΓZ = Γhad + 3 Γl + Γinv

Γinv = NνΓν Γν = Γ(Z → νiν̄i)

Nν =
Γinv

Γν
= ( Γinv

Γl ) ( Γl

Γν )

Nv = 2.984 ± 0.008



Away from the Z pole



WW threshold

✤ Measurements of  allow to

✤ probe gauge boson interactions

✤ determine  from the dependence of the WW production 
threshold behaviour on ) 
 
 
 
 
 
 
 
 
 
 
 
 

e+e− → W+W− → 4 fermions

MW
MW

0.5 % precision
of theoretical predictions



Global fits

image credit:  J. de Blasexperimental measurements 

theoretical calculations



Global consistency of the SM

✤ Input data from many experiments: at LEP,  SLC ( ), Tevatron ( ), LHC ( ), …

✤ Global fits can be similarly used to put constraints on BSM models /SMEFT parameters 
 
→ see lectures by J. Guimaraes da Costa 

e+e− pp̄ pp

1803.01853



Predictions from global fits

✤ First direct indication of the predictive power of global fits: top 
mass prediction on basis of measurements at LEP and SLC  
 
 

✤ Good agreement between the indirect prediction of  and the 
directly measured value confirms the validity of SM radiative 
corrections 
 
 
 
 

mt

discovery



✤ With the top mass measured, one could make prediction for the Higgs mass → the famous “blue band” plot  
 
Just before turning on the LHC…                                       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✤ With the top mass measured, one could make prediction for the Higgs mass → the famous “blue band” plot  
 
Just before turning on the LHC…                                        
 
 
 
 
 
 
 
 
 
 
 
 

Indirect Higgs searches
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Theory uncertainty
July 2008 mLimit = 154 GeV

✤ Quite a few good reasons to keep on searching: 

✤ Unitarity

✤ Triviality

✤ Vacuum stability 



Unitarity bound

Direct consequence of the unitarity of the S matrix: the optical theorem

✤ Consider  elastic scattering

 

 
 
 

2 → 2

dσ
dΩ

=
1

64π2s
|A |2

✤ Partial wave decomposition of amplitude

✤  are the spin  partial wave amplitudes 

  are Legendre polynomials: 

A = 16π
∞

∑
l=0

(2l + 1) Pl(cos θ)al

ai l

Pl(cos θ) ∫
1

−1
dxPl(x)Pl′￼(x) =

2δl,l′￼

2l + 1

      so for each              and       σ =
1
s

Im (A(θ = 0)) l Im (al) = |al |
2 Re (al) ≤

1
2

⇒ σ =
8π
s

∞

∑
l=0

(2l + 1)
∞

∑
l′￼=0

(2l′￼+ 1) ala*l′￼ ∫
1

−1
d cos θPl(cos θ)Pl′￼

(cos θ) =
16π

s

∞

∑
l=0

(2l + 1) |al |
2



Unitarity bound (2)

✤ Highly relativistic (boosted in the z-direction) gauge bosons dominated by their longitudinal polarisation

✤ Longitudinal degree of freedom ↔︎ Goldstone mode

✤ Equivalence theorem: at very high energies, , the scattering amplitude for the longitudinally polarised W bosons  can be 
approximated by the scattering amplitude for the Goldstone bosons, up to  corrections 

✤ Consider      
 
 

     and it follows    

 

                                                                                                     Hence for    from  it follows  

s ≫ M2
W

𝒪(M2
W /E2)

A(W+
L W−

L → W+
L W−

L ) ∼ A(ρ+ρ− → ρ+ρ−)

A =
M2

H

v2 [2 +
M2

H

s − M2
H

+
M2

H

t − M2
H ] a0 =

M2
H

16πv2 [2 +
M2

H

s − M2
H

−
M2

H

s
log (1 +

s
M2

H )] s≫M2
H M2

H

8πv2

s ≫ M2
H |Re a0 | <

1
2

MH < 2 πv = 870 GeV



Triviality bound

✤ Running of the Higgs self coupling 
 

                                                                   

✤ In the limit of the strong coupling  

                                                                                  with a solution         

 

(Landau) pole at    

 

Requesting finite  at a given , i.e.   leads to  scale-dependent condition 

dλ
d log Q2

=
1

16π2 [12λ2 + 6λy2
t − 3y4

t −
3
2

λ (3g2
2 + g2

1) +
3
16 (2g4

2 + (g2
2 + g2

1)2)]
λ

dλ
d log Q2

=
3

4π2
λ2 λ(Q) =

λ(v)

1 − 3
4π2 λ(v)log ( Q2

v2 )

1 =
3

4π2
λ(v)log ( Q2

v2 )
λ Q = Λ λ(Λ)−1 > 0 M2

H <
8π2v2

3 log ( Λ2

v2 )



Vacuum stability bound

                               

✤ In the limit of a weak Higgs self-coupling at the EW scale, the negative terms in the equation above can in principle lead to a 
negative value of the coupling → unstable Higgs potential

✤  Considering only the dominant term with the top Yukawa coupling  
 

              with the solution 

✤
Imposing  leads to  

dλ
d log Q2

=
1

16π2 [12λ2 + 6λy2
t − 3y4

t −
3
2

λ (3g2
2 + g2

1) +
3
16 (2g4

2 + (g2
2 + g2

1)2)]

yt

dλ
d log Q2

= −
3m4

t

4π2v4
λ(Q2) = λ(v2) −

3m4
t

4π2v4
log ( Q2

v2 )
λ(Λ) > 0 M2

H >
3m4

t

2π2v2
log ( Λ2

v2 )



Constraints on  in the SMMH

Perturbativity (triviality) 

Stability of the potential 

➜ see also lectures by J. Ellis



Constraints on  in the SMMH

Perturbativity (triviality) 

Stability of the potential 

 GeVMH = 125

➜ see also lectures by J. Ellis



Living on the edge

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Precise knowledge of the top mass and the top Yukawa coupling (its running, measurement) crucial

arXiv:1307.3536



12 years with the Higgs @ LHC

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Global signal strength  
 
                                                        (ATLAS)                                         (CMS)        

μ = σ/σSM

μ = 1.05 ± 0.06 μ = 1.00 ± 0.06

➜ see also lectures by J. Ellis



How to make the SM Higgs at the LHC
➜ see also lectures by J. Ellis



Gluon fusion

✤ Higgs boson does not couple directly to gluons 

✤ At LO the gluon fusion process is mediated via loop, with the 
biggest contribution from the top quark ( )

✤ Effective (loop-induced)  coupling in the heavy top mass 
 limit  

 

                

 
         
 
 
 

✤ In the heavy top limit approximation analogous to the Drell-Yan 
process!    

yt ∝ mt

ggH
(mt → ∞)

ℒggH, eff = −
1
4v

CH HGμνGμν

Calculations of the inclusive rate



Higgs boson interactions

✤  ’s are rescaling factors of the SM 
couplings 
 
 
 
 
 

✤ “kappa-framework” is very/too simple 
(problems with gauge invariance, 
kinematic information, consistency at 
higher orders,..) , better approach is 
provided by effective field theory 

κ

−ig
mf

MW
κf

−igMVgμν κV

ATLAS Run 2

✤ Higgs-gauge boson couplings → test of the EWSB mechanism,  Yukawa couplings → mass of elementary particles

✤ The scaling of the couplings with the mass of the particles is a central prediction of the theory 



Higgs self-coupling

✤ Value of  decides the shape of the SM scalar 
potential

✤  can be probed at hadron colliders through the 
Higgs pair-production processes

✤  Extremely low cross section at the LHC (1000 times 
smaller than single Higgs production)

λ

λ

V =
M2

H

2
H2 + λvH3 +

λ
4

H4 (λ =
M2

H

2v2 )

arXiv:1910.00012



SM in EFT

✤ SM “works” fantastically well  a very good approximation of an unknown BSM theory chosen by Nature  all new 

physics at a scale    SM as lowest order in EFT expansion of the full theory

                                                                  

✤ All the principles same as behind SM (QFT, local gauge symmetries, matter content and the quantum numbers, Higgs 
mechanism of EWSB via single SU(2) doublet field) apart from renormalizability: order-by-order

✤ Dim-5: only 1 operator   (Weinberg)              Majorana mass term

✤ Dim-6: 59 operators (“Warsaw basis”), 2499 if flavour structure considered

→ →

Λ ≫ v →

ℒSMEFT = ℒSM +
1
Λ

ℒ5 +
1
Λ

ℒ6 + … ℒn = ∑
k

c(n)
K 𝒪(n)

k

𝒪5 =
v2

2
ν̄c

LνL →

SM fields

BSM effects
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The future is bright

✤ Next stage of the LHC, after current Run 3: High-Luminosity LHC (HL-LHC): 20 times larger data sample and improved detectors 
 
 
 
 
 
 
 
 
 
 

✤ However, precision measurements of the full Higgs sector: triple and quartic self-interactions, Yukawa couplings to light fermions 
etc. will require next generation colliders such as e.g. FCC (-ee). 
                                                                                                                                                  



Summary

✤ With the discovery of a new boson 12 years ago, and then subsequent confirmation of it as the Higgs boson, the EW SM is now 
complete

✤ Results of collider physics experiments are in agreement with the EWSM — it “works” amazingly well

✤ Yet, it can only be an effective theory — the evidence for BSM physics is there

✤ dark matter

✤ neutrino masses

✤ matter-antimatter symmetry

✤ ….

✤ The Higgs sector still needs to be fully tested

✤ The search for new physics relies on developments in both experiment and theory
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✤ With the discovery of a new boson 12 years ago, and then subsequent confirmation of it as the Higgs boson, the EW SM is now 
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✤ Results of collider physics experiments are in agreement with the EWSM — it “works” amazingly well

✤ Yet, it can only be an effective theory — the evidence for BSM physics is there

✤ dark matter

✤ neutrino masses

✤ matter-antimatter symmetry

✤ ….

✤ The Higgs sector still needs to be fully tested

✤ The search for new physics relies on developments in both experiment and theory

… and many theoretical questions remain:

✤ where does the Higgs potential come from?

✤ why 3 generations? Why the observed mass 

pattern?

✤ what protects the Higgs mass (naturalness 

problem)?

✤ …

Good news: there is a lot to understand and discover!


