2024 Asia-Europe-Pacific School of High-Energy Physics

Nakhon Pathom, Thailand June 12-25, 2024

iet

Heavy-ion Physics 2

Xin-Nian Wang

Lawrence Berkeley National Laboratory

Jets in heavy-ion collisions

Jet energy, medium response and background

Jet energy as defined in the jet reconstruction algorithm with a jet cone R Uncorrelated background should be subtracted Jet-induced medium response is correlated with jet: not background Some of the energy lost by leading partons remain inside jet-cone

Bow waves, Mach waves

Jet-induced medium excitation

Casalderrey-Solana, Shuryak & Teaney (2005), Stoecker (2005)

Jet induced Mach-cone in QGP

$$v = p/E > c_s$$

Hydrodynamic approach

$$\partial_{\mu}T^{\mu\nu} = J^{\nu}$$

 $J^{
u}: {
m energy-momentum \ deposited by jet}$

Mach cone from linear response

$$T^{\mu\nu} \to T^{\mu\nu}_0 + \delta T^{\mu\nu} \quad \partial_\mu \delta T^{\mu\nu} = J^{\nu}$$

$$\delta T^{00} \equiv \delta \epsilon, \quad \delta T^{0i} \equiv g^i,$$

$$\delta T^{ij} = \delta^{ij} c_s^2 \delta \epsilon + \frac{3}{4} \Gamma_s (\partial^i g^j + \partial^j g^i + \frac{2}{3} \delta^{ij} \nabla \cdot \vec{g}),$$

$$J^{0} = -i\omega\delta\epsilon + i\vec{k}\cdot\vec{g},$$
$$\vec{J} = -i\omega\vec{g} + i\vec{k}c_{s}^{2}\delta\epsilon + \frac{3}{4}\Gamma_{s}\left[k^{2}\vec{g} + \frac{\vec{k}}{3}(\vec{k}\cdot\vec{g})\right]$$

Qin, Majumdrr, Song & Heinz (2008)

Microscopic picture of Mach wave

LBT: Linear Boltzmann Transport

$$p_1 \cdot \partial f_1 = -\int dp_2 dp_3 dp_4 (f_1 f_2 - f_3 f_4) |M_{12 \to 34}|^2 (2\pi)^4 \delta^4 (\sum_i p_i) + \text{inelastic}$$

Induced radiation

$$\frac{dN_g}{dzd^2k_{\perp}dt} \approx \frac{2C_A\alpha_s}{\pi k_{\perp}^4} P(z)\hat{q}(\hat{p}\cdot u)\sin^2\frac{k_{\perp}^2(t-t_0)}{4z(1-z)E}$$

- pQCD elastic and radiative processes (high-twist)
- Transport of medium recoil partons (and back-reaction)
- CLVisc 3+1D hydro bulk evolution

He, Luo, Zhu & XNW, PRC 91 (2015) 054908

LBT: Jet-induced medium response

Energy distr. of medium response in a static medium

He, Luo, XNW & Zhu, PRC91 (2015) 054908

CoLBT-hydro (Coupled Linear Boltzmann Transport hydro)

Concurrent and coupled evolution of bulk medium and jet showers

$$p \cdot \partial f(p) = -C(p) \quad (p \cdot u > p_{cut}^{0})$$
$$\partial_{\mu} T^{\mu\nu}(x) = j^{\nu}(x)$$
$$j^{\nu}(x) = \sum_{i} p_{i}^{\nu} \delta^{(4)}(x - x_{i}) \theta(p_{cut}^{0} - p \cdot u)$$

- LBT for energetic partons (jet shower and recoil)
- Hydrodynamic model for bulk and soft partons: CLVisc
- Parton coalescence (thermal-shower)+ jet fragmentation
- Hadron cascade using UrQMD

Hadron spectra from low to high p_T

Solving R_{AA}-v₂ puzzle

0.1

.....

BERKELEY LAB

0

lmì

2

4

p_{_}(GeV/c)

6

8

2

Δ

p_(GeV/c)

6

Pb + Pb @ $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ DATA.40-50% -CoLBT+UrQMD DATA,10-20% CoLBT+UrQMD 0.3 o CMS o CMS h± ATLAS \triangle ATLAS Δ □ ALICE □ ALICE **v**₂(SP) 0.2 10-20% 40-50% 0. (b) (a) 15 20 5 10 15 20 5 0 10 p_(GeV/c) p_(GeV/c)

Zhao, Ke, Chen, Luo & XNW,

PRL 128 (2022) 2, 022302 (2103.14657)

Z/γ-jet: probing QGP

Jet suppression and energy loss

He, Cao, Chen, Luo, Pang & XNW 1809.02525

- Weak p_T dependence: initial jet spectra and p_T dependence of energy loss ΔE
- Week energy dependence: increase of jet energy loss and the slope of initial spectra
- Medium response reduce jet net energy loss

Energy loss in γ/Z-jet at LHC

Suppression of leading and multiple jets

Luo, Cao, He & XNW, arXiv:1803.06785

Medium modification of γ-jets

Chen, Cao, Luo, Pang & XNW, 2005.09678

Medium response & soft gluon radiation

Medium response:

$$\delta f(p) \sim e^{-p \cdot u/T}$$

Medium-induced gluon radiation:

Formation time:

Mean-free-path

limits the formation time

$$egin{aligned} au_f &= rac{2\omega}{k_T^2} & k_T^2 pprox au_f \hat{q} \ & oldsymbol{\nabla}_T &= \sqrt{2\omega/\hat{q}} \ & oldsymbol{\nabla}_f &\leq \lambda \sim 1/T \quad \hat{q} \sim T^3 \ & \omega &pprox \lambda^2 \hat{q}/2 \sim T \end{aligned}$$

Signal of diffusion wake

Chen, Yang, He, Ke, Pang and XNW, 2101.05422

.....

BERKELEY LAB

huì

MPI: Multiple parton interaction

XNW & Gyulassy (1991)

Multiple jet production in pp:

$$g_j(b, p_T) = \frac{[\Delta \sigma(p_T) T(b)]^j}{j!} e^{-\Delta \sigma(p_T) T(b)}$$

Probability of multiple jets ($p_T > p_0$) with at least one jet with $p_T > p_T^{trig}$

$$g_{j}^{\text{trig}}(b) = \frac{[\sigma(p_{0})T(b)]^{j}}{j!} \left\{ 1 - \frac{[(\sigma(p_{0}) - \sigma(p_{T}^{\text{trig}})]^{j}}{\sigma(p_{0})^{j}} \right\} e^{-\sigma(p_{0})T(b)}$$

 $\approx j \frac{\sigma(p_T^{\mathrm{trig}})}{\sigma(p_0)} g_j(b)$

Enhanced multiple minijet Production in triggered jet events

MPI subtraction in Z-hadron correlation

Mixed event-subtraction

$$\frac{dN_{\text{MPI}}^{hZ}}{d\phi} = \frac{dN_{\text{mix}}^{hZ}}{d\phi} - \int_{1}^{\pi} \frac{d\phi}{\pi} \left(\frac{dN^{hZ}}{d\phi} - \frac{dN^{hZ}}{d\phi}|_{\phi=1}\right)$$

3D structure of diffusion wake

3D structure of diffusion wake

Jet-hadron correlation in γ /jet events

.....

BERKELEY LAB

huì

Double peak structure in η

Longitudinal jet tomography

Zhang, Owens, Wang and XNW, Phys. Rev. Lett. 103, 032302 (2009)

length dependence of parton Energy loss

 γ -jet asymmetry $x_{\gamma jet} = p_T^{jet} / p_T^{\gamma}$

Can be used to select propagation length <L>

 $p_T^h/p_T^\gamma \sim 1$

Diffusion wake and jet energy loss

p_T^{jet}/p_T^{γ} : proxy of jet energy loss

Initial position & azimuthal correlation

γ -hadron correlation

106, 012301 (2011)

Tachibana, Shen & Majumder 2001.08321 (2020)

Drift-diffusion equation: uniform medium

Boltzmann equation under approximation of small angle elastic scattering, no drag:

$$\frac{\partial f}{\partial t} + \frac{\vec{p}_{\perp}}{E} \cdot \frac{\partial f}{\partial \vec{r}_{\perp}} = \frac{\hat{q}}{4} \vec{\nabla}_{p_{\perp}}^2 f(\vec{p}, \vec{r})$$

Initial distr. $f(\vec{p},\vec{r})_{t=0}=(2\pi)^2\delta^2(\vec{r}_{\perp})\delta^2(\vec{p}_{\perp})$

$$f = 3 \left(\frac{4E}{\hat{q}t^2}\right)^2 \exp\left[-(\vec{r}_\perp - \frac{\vec{p}_\perp}{2E}t)^2 \frac{12E^2}{\hat{q}t^3} - \frac{p_\perp^2}{\hat{q}t}\right]$$
$$\int d^2 p_\perp \qquad \qquad \int \int \frac{d^2 r}{(2\pi)^2}$$
$$4\pi \frac{3E^2}{\hat{q}t^3} \exp\left(-r_\perp^2 \frac{3E^2}{\hat{q}t^3}\right) \qquad \frac{1}{\pi \hat{q}t} \exp\left(-\frac{p_\perp^2}{\hat{q}t}\right)$$

He, Pang & XNW, PRL 125 (2020) 12, 122301

Drift-diffusion equation: non-uniform medium

Linear spatial dependence $\hat{q} = \hat{q}_0 + \vec{x}_\perp \cdot \vec{a}$

Momentum asymmetry:

$$\delta f(\vec{p}_{\perp}) = -\frac{t}{3\omega\hat{q}_0}\vec{a}\cdot\vec{p}_{\perp}\left(1-\frac{p_{\perp}^2}{2\hat{q}_0t}\right)f_s(\vec{p}_{\perp},t)+\mathcal{O}(a^2)$$

Transverse gradient tomography

(p_T>3 GeV/c)

Jet energy loss \rightarrow propagation length \rightarrow initial jet position in x: Longitudinal tomography

3D jet tomography

Enhancing the diffusion wake

Chen, Yang, He, Ke, Pang and XNW, Phys. Rev. Lett. 127 (2021) 8, 082301

Asymmetric jet shape

Energetic hadrons at the core of jet deflected away from center

Soft hadrons from medium response at large angle flow into center

31

Deep learning assisted jet tomography

PCN (point cloud network)

Eur.Phys.J.C 83 (2023) 7, 652

Yang, He, Chen, Ke, Pang & XNW

DL network selection

Actual distribution

 γ -soft hadron correlation

Energy-energy correlator (EEC)

A new jet substructure observable:

$$\frac{d\Sigma^{(n)}}{d\theta} = \frac{1}{\sigma} \sum_{i \neq j} \int d\vec{n}_{i,j} \frac{d\sigma_{ij}}{d\vec{n}_{i,j}} \frac{E_i^n E_j^n}{Q^{2n}} \delta(\vec{n}_1 \cdot \vec{n}_2 - \cos\theta)$$

Moult, et al

Fan, QM23

Resolving QGP scales with EEC

050500,05050

.....

BERKELEY LAB

lmì

Andres, et al , 2209.11236

34

Resolving QGP scales with EEC

• Can EEC resolve the induced gluon emission in realistic heavy-ion collisions?

• Can EEC resolve recoil partons (medium response)?

• Can EEC resolve the angular scale of in-medium parton collisions

Jet EEC in Vacuum

LO emission in vacuum:

$$\frac{d\Sigma_q^{\text{vac}}}{d\theta} \approx \frac{\alpha_s}{2\pi} C_F \int_0^1 dz \ z(1-z) P_{qg}(z) \int_{\mu_0^2}^{Q^2} \frac{d\ell_\perp^2}{\ell_\perp^2} \delta\left(\theta - \frac{\ell_\perp}{z(1-z)E}\right) \\ \approx \frac{\alpha_s}{2\pi} \frac{C_F}{2\theta} \left(3 - \frac{2\mu_0}{E\theta}\right) \sqrt{1 - \frac{4\mu_0}{E\theta}}$$

Non-leading log power corrections $\sim heta$ Uncorrelated emission at small angle

Effects of hadronization

EEC from HT in single emission

Contributions from medium response

 $2 \rightarrow 2$ elastic collisions:

$$\frac{d\Sigma_a^{\text{med}}}{d\theta} = \int dx d\vec{n}_{c,d} \delta(\vec{n}_c \cdot \vec{n}_d - \cos\theta) \sum_{b,(cd)} \int \prod_{i=b,c,d} d[p_i]$$

$$\times \frac{\gamma_b}{2E_a} \left[f_b (1 \pm f_c) (1 \pm f_d) - f_c (1 \pm f_a) (1 \pm f_b) \right]$$

$$\times \frac{E_c E_d}{E_a^2} (2\pi)^4 \delta^4 (p_a + p_b - p_c - p_d) \left| \mathcal{M}_{ab \to cd} \right|^2,$$

Both recoil and back-reaction ("negative partons")

EEC of single parton in a QGP brick Single parton with multiple scattering in a brick in LBT

Debye mass:

$$\mu_D^2 = \frac{3}{2}Kg^2T^2$$

We vary only *K* in the sampling the transverse momentum transfer of $2 \rightarrow 2$ and kinematic limit of gluon bremsstrahlung. We however keep qhat and $2 \rightarrow 2$ rate Medium sequences

(recoil + "negative" partons) Is (more) important

EEC of a jet shower in a QGP brick

Initial γ-jet configurations generated from Pythia8

Energy loss and momentum broadening lead to suppression at small angles

Radiated gluon and medium response dominate at large angles

A jet shower in a brick in LBT

EEC of γ-jets in Pb+Pb Collisions

CoLBT simulations:

nancement at large angles by soft frons from radiated gluons and dium response, sensitive to pT

S

EEC by energetic hadrons from leading shower partons at small angles are suppressed, not affected by pT cuts

EEC for single inclusive jets

pT cut reduces enhancement from medium

Similar to EEC for γ -jets

EEC of dijets

BERKELEY LAB

EEC_{leading} – EEC_{subleading}: robust measure of medium modification free of background

Seeing Mach-cone through 3p Azimuthal Correlation

Back-to-back correlation due to momentum conservation of parton splitting

Azimuthal uniform correlation due to medium-response: Mach-cone – sound velocity?

p+p (γ +jet) p_T>40 GeV/c

3.0

2.5

2.0

1.0

0.5

0.0 -

0.0

0.1

Summary 1

- Medium response reduces net jet energy loss
- Medium response leads to
 - enhancement of soft hadrons in jet direction
 - depletion of soft hadron on the away side
- Unique 3D structure of diffusion wake
- Use 2D jet tomography to reveal the angular structure of Mach-cone excitation
- Future studies: ML improved 2D tomography and constraint on EoS, transport coefficients

Summary 2

- First complete and realistic calculation of jet EEC in heavy-ion collisions
- Medium-response dominates enhancement of EEC at large angles
- Energy loss of leading jet shower partons leads to suppression of EEC at small angles
- Medium modification of EEC is sensitive to the angular scale of in-medium parton collisions
- Azimuthal dependence of EEC imaging Mach-cone

Jet Quenching phenomena at RHIC

Diffusion wake and EoS

$$\langle c_s \rangle_{\rm eosq} > \langle c_s \rangle_{\rm s95p}$$

Diffusion wake and viscosity

Jet quenching at LHC

ATLAS jet events in p+p (left) and Pb+Pb (right) collisions

