<u>Gino Isidori</u> [University of Zürich]

Lecture 1: Introduction to flavor physics

Lecture 2: Meson mixing, rare decays, universality tests

Neutral meson mixing
 The structure of ∆F=2 amplitudes
 Rare b→ s ll decays: generalities
 Rare b→ s ll decays: selected results
 Tests of Lepton Flavor Universality

Lecture 3: Flavor physics beyond the SM

European Research Council Established by the European Commission

Recap from last lecture

The great interest of precision measurements in flavor physics is the possibility to tests a large number of non-standard higher-dim. operators which may correspond to rather high-energy scales ↔ flavor structure BSM

Today we'll discuss in more detail some specific amplitudes & observables

The lightest bound states (mesons) composed by a *quark-antiquark pair* of same charge but *different flavor* form very interesting systems: a pair of pseudo-scalar mesons with

- tiny mass difference (*due to 2nd order weak interactions*)
- mass eigenstates different from flavor eigenstates

Four systems of this type: $K^0 = |\overline{s} d\rangle$, $B_d \equiv B^0 = |\overline{b} d\rangle$, $B_s = |\overline{b} s\rangle$, $D^0 = |\overline{c} s\rangle$

The interesting time-evolution of these systems has allowed to discover the phenomenon of CP violation in fundamental interactions (*observed for the first time in the neutral kaon system*).

The effective Hamiltonian describing the ground state (i.e. the mass matrix) of these systems has a relatively simple structure:

$$i \frac{d}{dt} \begin{bmatrix} B^{0} \\ \overline{B}^{0} \end{bmatrix} = \begin{bmatrix} M_{0} & M_{12} \\ M_{12}^{*} & M_{0} \end{bmatrix} \begin{bmatrix} B^{0} \\ \overline{B}^{0} \end{bmatrix}$$

• The CPT theorem implies $M_{11} = M_{22} = M_0 = real$

• If CP were a good symmetry, then $M_{12} = M_{21} \rightarrow M_{12} = real$ However, CP is violated in the SM (in the Yukawa sector) and the complex phase in the CKM matrix induces a complex phase in $M_{12} = |\Delta M/2| e^{i\phi_M}$

 $M_0 = M_{Bd} = 5.279 \text{ GeV}$

 \overline{B}_d \overline{B}_d \overline{B}_d

 $2 |\mathbf{M}_{12}| = \Delta M_{Bd} = 3.4 \times 10^{-13} \text{ GeV}$

Taking into account the (weak) decay of the heavy quarks inside the mesons, the <u>time evolution</u> of the system is described by means of a non-Hermitian Hamiltonian:

Taking into account the (weak) decay of the heavy quarks inside the mesons, the <u>time evolution</u> of the system is described by means of a non-Hermitian Hamiltonian:

$$i \frac{d}{dt} \begin{bmatrix} B^{0} \\ \overline{B}^{0} \end{bmatrix} = \begin{bmatrix} M - i \Gamma/2 \end{bmatrix} \begin{bmatrix} B^{0} \\ \overline{B}^{0} \end{bmatrix}$$
$$\begin{bmatrix} M_{0} & M_{12} \\ M_{12}^{*} & M_{0} \end{bmatrix}$$

Mass eigenstates:

$$egin{aligned} |B_L^{}
angle &= p ig| B^0^{}
angle &+ q ig| \overline{B}^0^{}
angle \ |B_H^{}
angle &= q ig| B^0^{}
angle &+ p ig| \overline{B}^0^{}
angle \end{aligned}$$

$$\frac{q}{p} \approx \arg(M_{12}) = e^{i\phi_{Bd}}$$

(in the limit $|\Gamma_{12}/M_{12}| \ll 1$)

Key observation: for B_d and B_s mesons both magnitude & phase of M_{12} can be computed precisely in the SM

<u>Neutral meson mixing</u>

The study of time-dependent decays of neutral B into CP eigenstates provides a marvelous tool to extract both phase & magnitude of the mixing amplitude:

If $|\lambda_f| = 1$ (i.e. if A_f is dominated by a single weak phase) then :

$$\Gamma(B^{0}(t) \to f) \propto e^{-\Gamma_{B}t} \left[1 - \eta_{f} \operatorname{Im}(\lambda_{f}) \sin(\Delta m_{B}t) \right]$$

$$\Gamma(\bar{B}^{0}(t) \to f) \propto e^{-\Gamma_{B}t} \left[1 + \eta_{f} \operatorname{Im}(\lambda_{f}) \sin(\Delta m_{B}t) \right]$$

$$Im(\lambda_{f}) = \sin(\phi_{Bd} - 2\phi_{Af})$$

$$f(\bar{B}^{0}(t) \to f) \propto e^{-\Gamma_{B}t} \left[1 + \eta_{f} \operatorname{Im}(\lambda_{f}) \sin(\Delta m_{B}t) \right]$$

$$mixing phase$$

$$phase of A$$

The study of time-dependent decays of neutral B into CP eigenstates provides a marvelous tool to extract both phase & magnitude of the mixing amplitude.

Key points to successfully use this method:

- [EXP]: <u>flavor tagging</u> and <u>time-dependent resolution</u> are essential ingredients
- [TH]: identify final states such that A_f is dominated by a single weak phase

The study of time-dependent decays of neutral B into CP eigenstates provides a marvelous tool to extract both phase & magnitude of the mixing amplitude.

Key points to successfully use this method:

- [EXP]: <u>flavor tagging</u> and <u>time-dependent resolution</u> are essential ingredients
- [TH]: identify final states such that A_f is dominated by a single weak phase

The study of time-dependent decays of neutral B into CP eigenstates provides a marvelous tool to extract both phase & magnitude of the mixing amplitude.

Key points to successfully use this method:

- [EXP]: <u>flavor tagging</u> and <u>time-dependent resolution</u> are essential ingredients
- [TH]: identify final states such that A_f is dominated by a single weak phase

B factories:

$$e^+ + e^- \rightarrow \Psi(4S) \rightarrow \overline{B} B$$

Hadron colliders:

- clean environment [$\sigma(B) / \sigma(bkg) \sim 0.3$]
- coherent quantum state \rightarrow clean flavor tag from the opposite meson decay (e.g. $b \rightarrow c \ e^{-} v$)
- low stat. [$\sim 10^8$ B pairs / 100 fb⁻¹]
- dirty environment [$\sigma(B) / \sigma(bkg) < 0.01$]
- incoherent quantum state
- high stat. [$\sim 10^{12}$ B pairs / 1 fb⁻¹]
- all hadrons with b-quarks produced

Neutral meson mixing

Nowadays we have an excellent exp. knowledge of both magnitude & phase of both $B_d \& B_s$ mixing amplitudes

The structure of $\Delta F=2$ amplitudes

▶<u>The structure of △F=2 amplitudes</u>

Let's give a closer look to the mixing amplitude:

Highly suppressed amplitude potentially very sensitive physics beyond the SM

- No SM tree-level contribution
- Strong suppression within the SM due to the CKM hierarchy
- Measurable with good accuracy via the time evolution of the neutral meson systems
- Calculable with good accuracy since dominated by short-distance dynamics [power-like "GIM mechanism" → top-quark dominance]

\blacktriangleright *The structure of* $\Delta F=2$ *amplitudes*

We can understand why the intermediate top-quark contribution is dominant (*i.e. the reason why it can be computed precisely*) from simple arguments:

$$\begin{array}{c} b & V_{qb}^{*} & V_{q'd} & d \\ \hline B & q & & \\ d & V_{qd} & V_{q'b}^{*} & b \\ \hline & & V_{ub}^{*} V_{ud} = - V_{tb}^{*} V_{td} - V_{cb}^{*} V_{cd} \\ \hline & & V_{ub}^{*} V_{ud} = - V_{tb}^{*} V_{td} - V_{cb}^{*} V_{cd} \\ \hline & & \\ A_{\Delta F=2} = \sum_{q=u,c,t} (V_{qb}^{*} V_{qd}) \left[V_{tb}^{*} V_{td} (A_{tq} - A_{uq}) + V_{cb}^{*} V_{cd} (A_{cq} - A_{uq}) \right] \end{array}$$

"GIM" cancellation

\blacktriangleright The structure of $\Delta F=2$ amplitudes

We can understand why the intermediate top-quark contribution is dominant (*i.e. the reason why it can be computed precisely*) from simple arguments:

$$\frac{b}{B} = \frac{V_{qb}^* V_{q'd} d}{V_{qb}^* V_{q'd} V_{q'd}^* b}} A_{\Delta F=2} = \sum_{q,q'=u,c,t} (V_{qb}^* V_{qd}) (V_{q'b}^* V_{q'd}) A_{q'q} V_{qb}^* b} V_{ub}^* V_{ud} = -V_{tb}^* V_{td} - V_{cb}^* V_{cd} \int [CKM unitarity] A_{\Delta F=2} = \sum_{q=u,c,t} (V_{qb}^* V_{qd}) [V_{tb}^* V_{td} (A_{tq} - A_{uq}) + V_{cb}^* V_{cd} (A_{cq} - A_{uq})] A_{qq'} \sim \frac{g^4}{16\pi^2 m_W^2} \left[Const. + \frac{m_q m_{q'}}{m_W^2} + ... \right] \langle \overline{B} | (\overline{b}_L \gamma_\mu d_L)^2 | B \rangle \int [expansion of the loop amplitude for small (internal) quark masses] A_{\Delta F=2} \sim (V_{tb}^* V_{td})^2 \frac{g^4 m_t^2}{16\pi^2 m_W^4} + ...$$

▶<u>The structure of △F=2 amplitudes</u>

We can understand why the intermediate top-quark contribution is dominant (*i.e. the reason why it can be computed precisely*) from simple arguments:

It is even more instructive (*and more correct*...) to compute the amplitude in the limit where we *switch-off* gauge interactions ("gauge-less limit")

$$Y_U = V^+ \times \text{diag}(y_u, y_c, y_t)$$

$$\mathscr{L}_{\text{Yukawa}} \rightarrow \overline{d}_L^{\ i} Y_U^{\ ik} u_R^{\ k} \phi^- + h.c.$$

- In the gauge-less limit there is no W field
- The three Goldstone bosons associated to the Higgs field remain massless
- The charged Goldstone bosons mediate flavorchanging interactions

\blacktriangleright *The structure of* $\Delta F=2$ *amplitudes*

We can understand why the intermediate top-quark contribution is dominant (*i.e. the reason why it can be computed precisely*) from simple arguments:

It is even more instructive (*and more correct*...) to compute the amplitude in the limit where we *switch-off* gauge interactions ("gauge-less limit")

$$\mathscr{L}_{\text{Yukawa}} \rightarrow \overline{d}_L{}^i Y_U{}^{ik} u_R{}^k \phi^- + h.c.$$

$$Y_U = V^+ \times \operatorname{diag}(y_u, y_c, y_t)$$

$$\approx V^+ \times \operatorname{diag}(0, 0, y_t)$$

$$A_{\rm DF=2}^{\rm gauge-less} \sim (V_{\rm tb}^{*}V_{\rm td})^2 \quad \frac{(v_t)^4}{16\pi^2 m_t^2} \sim (V_{\rm tb}^{*}V_{\rm td})^2 \frac{g^4 m_t^2}{16\pi^2 m_W^4} \qquad m_t = y_t v / \sqrt{2} \\ m_W = g v / 2$$

▶<u>The structure of △F=2 amplitudes</u>

We can understand why the intermediate top-quark contribution is dominant (*i.e. the reason why it can be computed precisely*) from simple arguments:

It is even more instructive (*and more correct*...) to compute the amplitude in the limit where we *switch-off* gauge interactions ("gauge-less limit")

$$\mathscr{L}_{\text{Yukawa}} \rightarrow \overline{d}_L^{\ i} \ Y_U^{\ ik} u_R^{\ k} \phi^- + h.c.$$

$$Y_U = V^+ \times \operatorname{diag}(y_u, y_c, y_t)$$

$$\approx V^+ \times \operatorname{diag}(0, 0, y_t)$$

$$A_{\text{DF=2}}^{\text{gauge-less}} \sim (V_{\text{tb}}^{*} V_{\text{td}})^2 \quad \frac{(v_t)^4}{16\pi^2 m_t^2} \sim (V_{\text{tb}}^{*} V_{\text{td}})^2 \frac{g^4 m_t^2}{16\pi^2 m_W^4} \qquad m_t = y_t v / \sqrt{2}$$
$$m_W = g v / 2$$

This procedure leads to the <u>exact result</u> in the limit $m_t \gg m_W$:

$$A_{\text{DF=2}}^{\text{full}} = A_{\text{DF=2}}^{\text{gauge-less}} \times \left[1 + O(g^2)\right]$$

Clear demonstration that flavor-changing processes originate from the Yukawa sector of the SM

\blacktriangleright The structure of $\Delta F=2$ amplitudes & corresponding BSM bounds

Current data show no significant deviations from the SM (at the 5%-30% level, depending on the specific amplitude) on $\Delta F = 2$ observables (mass differences and CP-violating phases) \rightarrow strong bounds on possible BSM contributions:

\blacktriangleright The structure of $\Delta F=2$ amplitudes & corresponding BSM bounds

Current data show no significant deviations from the SM (at the 5%-30% level, depending on the specific amplitude) on $\Delta F = 2$ observables (mass differences and CP-violating phases) \rightarrow strong bounds on possible BSM contributions:

$$M(B_{d}-\overline{B}_{d}) \sim \frac{(y_{t}^{2} V_{tb}^{*} V_{td})^{2}}{16\pi^{2} m_{t}^{2}} + (\sum_{NP} \frac{1}{\Lambda^{2}})^{2}$$
The list of dimension 6 ops.
ncludes $(b_{L} \gamma_{\mu} d_{L})^{2}$ that contributes
to B_{d} mixing at the tree-level

Possible dynamical origin of this d=6 operator:

\blacktriangleright The structure of $\Delta F=2$ amplitudes & corresponding BSM bounds

Current data show no significant deviations from the SM (at the 5%-30% level, depending on the specific amplitude) on $\Delta F = 2$ observables (mass differences and CP-violating phases) \rightarrow strong bounds on possible BSM contributions:

Quite discouraging at first sight...

However, remember the discussion about accidental symmetries: these seemingly high scales could well be a "mirage"...

The structure of $\Delta F=2$ amplitudes & corresponding BSM bounds

Current data show no significant deviations from the SM (at the 5%-30% level, depending on the specific amplitude) on $\Delta F = 2$ observables (mass differences and CP-violating phases) \rightarrow strong bounds on possible BSM contributions:

	Bounds on	Λ (TeV)
Operator	Re	Im
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^{4}
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^{4}	3.2×10^5
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^{3}	2.9×10^{3}
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^{4}
$(\bar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	9.3×10^2
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^{3}	3.6×10^{3}
$(\bar{b}_L \gamma^{\mu} s_L)^2$	1.1×10^{2}	1.1×10^{2}
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3.7×10^2	3.7×10^2

Quite discouraging at first sight...

However, remember the discussion about accidental symmetries: these seemingly high scales could well be a "mirage"...

The only unambiguous message is:

No large breaking of the approximate U(2)ⁿ flavor symmetry at near-by energy scales

Rare $b \rightarrow s l^+l^-$ decays: generalites

\triangleright <u>Rare b \rightarrow sll decays: generalities</u>

The $\Delta F=2$ amplitudes are not the only suppressed flavor-changing amplitudes we are able to compute & measure precisely, enabling precise BSM tests.

An interesting complementary category are $\Delta F=1$ Flavor Channing Neutral Current amplitudes, such as $b \rightarrow s l^+l^-$

- No SM tree-level contribution
- Strong suppression within the SM because of CKM hierarchy
- Measurable with high accuracy (*in several cases*)
- More complicated interplay of QCD and weak interactions (or, equivalently, interplay of short- and long-distance dynamics)

\triangleright Rare b \rightarrow sll decays: generalities

General procedure in 3 steps to separate <u>the different energy scales</u> of the problem

1st step: Construction of a local eff. Lagrangian at the electroweak scale integrating out all the heavy fields above & around m_W (*including the heavy SM fields*)

The interesting short-distance info is encoded in the $C_i(M_W)$ (*initial conditions*) of the <u>Wilson coefficients</u> of the FCNC operators

\triangleright <u>Rare b \rightarrow sll decays: generalities</u>

General procedure in 3 steps to separate <u>the different energy scales</u> of the problem

1st step: Construction of a local eff. Lagrangian at the electroweak scale integrating out all the heavy fields above & around m_W (*including the heavy SM fields*)

\triangleright Rare b \rightarrow sll decays: generalities

General procedure in 3 steps to separate <u>the different energy scales</u> of the problem

1st step: Construction of a local eff. Lagrangian at the electroweak scale integrating out all the heavy fields above & around m_W (*including the heavy SM fields*)

N.B.: Non-standard effects due to <u>heavy new particles</u> result, in full generality, in modified values for the $C_i(M_W)$ (*possibly also when they are vanishing in SM*)

 \triangleright <u>Rare b \rightarrow sll decays: generalities</u>

 2^{nd} step: Evolution of L_{eff} down to low scales using the renormalization group

- <u>This effect is very small</u> in operators which cannot be generated at low scales, such as Q_{10} ($\leftrightarrow \underline{Z}$ penguin & W box) or the analog of $Q_{9,10}$ for l=v
- <u>But is large</u> for (most) other operators, such as Q₉

 \triangleright <u>Rare b \rightarrow sll decays: generalities</u>

3rd step: Evaluation of the hadronic matrix elements

 $A(B \to f) = \Sigma_i C_i(\mu) \langle f | Q_i | \mathbf{B} \rangle (\mu) \qquad [\mu \sim m_b]$

Local matrix element of quark bilinears, such as

 $\langle K \mid \overline{b} \gamma_{\mu} s \mid \mathbf{B} \rangle$

• Good precision from Lattice QCD (as in charged-curr. semileptonic decays)

Non-local matrix of four-quark ops. involving charm $(Q_{1,2}) \rightarrow$ nonperturbative long-distance effects, very large in specific kinematic regions

• Irreducible theory error (beside few exceptions)

 $m_{\mu\mu}^{\rm rec}$ [MeV/ c^2]

 \triangleright <u>Rare b \rightarrow sll decays: generalities</u>

3rd step: Evaluation of the hadronic matrix elements

 $A(\mathbf{B} \to \mathbf{f}) = \Sigma_{i} C_{i}(\mu) \langle \mathbf{f} | Q_{i} | \mathbf{B} \rangle (\mu)$ $\left[\mu \sim m_b \right]$ E.g.: $\mathbf{B} \rightarrow \mathbf{K} \, \mu^+ \mu^-$ 300 Local matrix element of Candidates / (44 MeV/c²) 0 100 0 200 0 0 0 0 0 0 LHCb quark bilinears, such as otal $\langle \mathbf{K} | \overline{b} \gamma_{\mu} s | \mathbf{B} \rangle$ short-distance interference background Good precision from Lattice QCD (as in charged-curr. semileptonic decays) 2000 3000 4000 1000

I. $B_s \rightarrow \mu^+ \mu^-$

\triangleright <u>Rare b \rightarrow sll decays: selected results</u>

This decay is a special case among exclusive *B* decays:

- The kinematics (*lepton pair in J=0*) forbids vector-current contributions \rightarrow fully dominated by short-distance [only the Q₁₀ op. contributes in the SM]
- Hadronic matrix element particularly simple: $\langle 0 | \overline{b} \gamma_{\mu} \gamma_5 s | \mathbf{B}_{s}(p) \rangle = i f_{B_s} p_{\mu}$

I. $B_s \rightarrow \mu^+ \mu^-$

\triangleright <u>Rare b \rightarrow sll decays: selected results</u>

This decay is a special case among exclusive *B* decays:

- The kinematics (*lepton pair in J=0*) forbids vector-current contributions \rightarrow fully dominated by short-distance [only the Q₁₀ op. contributes in the SM]
- Hadronic matrix element particularly simple: $\langle 0 | \overline{b} \gamma_{\mu} \gamma_5 s | \mathbf{B}_{s}(p) \rangle = i f_{B_s} p_{\mu}$

Very clean probe of the Yukawa mechanism (sensitive probe of possible extended Higgs sectors)

I. $B_s \rightarrow \mu^+ \mu^-$

\triangleright <u>Rare b \rightarrow sll decays: selected results</u>

This decay is a special case among exclusive *B* decays:

- The kinematics (*lepton pair in J=0*) forbids vector-current contributions \rightarrow fully dominated by short-distance [only the Q₁₀ op. contributes in the SM]
- Hadronic matrix element particularly simple: $\langle 0 | \overline{b} \gamma_{\mu} \gamma_5 s | \mathbf{B}_{s}(p) \rangle = \mathbf{i} f_{B_s} p_{\mu}$

I. $B_s \rightarrow \mu^+ \mu^-$

\triangleright <u>Rare b \rightarrow sll decays: selected results</u>

This decay is a special case among exclusive *B* decays:

- The kinematics (*lepton pair in J=0*) forbids vector-current contributions \rightarrow fully dominated by short-distance [only the Q₁₀ op. contributes in the SM]
- Hadronic matrix element particularly simple: $\langle 0 | \overline{b} \gamma_{\mu} \gamma_5 s | \mathbf{B}_s(p) \rangle = i f_{B_s} p_{\mu}$

For a few years an interesting (mild) tension was observed, *but it disappeared at the end of 2022...*

However, the experimental error is still largely dominant \rightarrow *room for improvement*

$$BR_{SM} = (3.66 \pm 0.14) \times 10^{-9}$$

Beneke et al. '19

\triangleright Rare b \rightarrow sll decays: selected results

II. Differential distributions in $B \rightarrow K^* \mu^+ \mu^-$

The process $B^0 \to K^{0*} (\to K^+ \pi^-) \mu^+ \mu^-$ is characterized by <u>3 independent angles</u> and the invariant mass $q^2 = m_{\mu\mu}$

General decomposition of the differential distribution:

 $\frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi\,\mathrm{d}q^2} = \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1-F_L)\sin^2\theta_K + F_L\cos^2\theta_K + \\ \frac{1}{4}(1-F_L)\sin^2\theta_K\cos2\theta_\ell - F_L\cos^2\theta_K\cos2\theta_\ell + \\ S_3\sin^2\theta_K\sin^2\theta_\ell\cos2\phi + S_4\sin2\theta_K\sin2\theta_\ell\cos\phi + \\ S_5\sin2\theta_K\sin\theta_\ell\cos\phi + S_6\sin^2\theta_K\cos\theta_\ell + \\ S_7\sin2\theta_K\sin\theta_\ell\sin\phi + \\ S_8\sin2\theta_K\sin2\theta_\ell\sin\phi + S_9\sin^2\theta_K\sin^2\theta_\ell\sin2\phi \end{bmatrix} \qquad \underbrace{Obse}_{\underline{I}}$

$$P'_5 = \frac{S_5}{\sqrt{F_L(1-F_L)}}$$

observable designed to cancel form factor dependence in the heavy-quark limit

> Descotes-Genon, Matias, Ramon, Virto '12

2024 Asia-Europe-Pacific Summer School

\triangleright Rare b \rightarrow sll decays: selected results

II. Differential distributions in $B \rightarrow K^* \mu^+ \mu^-$

2024 Asia-Europe-Pacific Summer School

\triangleright Rare b \rightarrow sll decays: selected results

II. Differential distributions in $B \rightarrow K^* \mu^+ \mu^-$

\triangleright <u>Rare b \rightarrow sll decays: selected results</u>

II. Differential distributions in $B \rightarrow K^* \mu^+ \mu^-$

Data seem to be well described by a shift in C_9 with respect to its SM value. *However*...

 Remember long-distance effects can *pollute* the determination of C₉ (*SM theory error underestimated?*)

\triangleright <u>Rare b \rightarrow sll decays: selected results</u>

III. Differential distributions in $B \rightarrow K^* \mu^+ \mu^- \&$ related observables

Data seem to be well described by a shift in C_9 with respect to its SM value. *However*...

- Remember long-distance effects can *pollute* the determination of C₉ (*SM theory error underestimated?*)
- On the other hand, similar pattern observed by other observables in related processes.

\triangleright <u>Rare b \rightarrow sll decays: selected results</u>

III. Differential distributions in $B \rightarrow K^* \mu^+ \mu^- \&$ related observables

Taking a conservative approach, we cannot claim (*yet*...) that what has been observed is an unambiguous evidence of physics beyond the SM. However, the situation is quite intriguing.

- Differential distributions help us to disentangle short- vs. long-distance effects [shortdistance should be "flat" in q² & "channel independent"]
- In the near future, with the help of high-statistics data, we could be able to disentangle "QCD pollution" from short-distance dynamics

Bordone, GI, Maecler, Tinari '24

Tests of Lepton Flavor Universality

General considerations on LFU

LFU [= *identical behavior of the 3 charged leptons*] is part of the approximate <u>accidental flavor symmetries</u> of the SM Lagrangian

LFU is <u>badly broken</u> in the Yukawa sector: $y_e \sim 3 \times 10^{-6}$, $y_u \sim 3 \times 10^{-4}$, $y_\tau \sim 10^{-2}$

However, all the lepton Yukawa couplings are small compared to SM gauge couplings, giving rise to the (*approximate*) universality of decay amplitudes which differ only by the different lepton species involved

General considerations on LFU

LFU [= *identical behavior of the 3 charged leptons*] is part of the approximate <u>accidental flavor symmetries</u> of the SM Lagrangian

LFU is <u>badly broken</u> in the Yukawa sector: $y_e \sim 3 \times 10^{-6}$, $y_u \sim 3 \times 10^{-4}$, $y_\tau \sim 10^{-2}$

However, all the lepton Yukawa couplings are small compared to SM gauge couplings, giving rise to the (*approximate*) universality of decay amplitudes which differ only by the different lepton species involved

LFU has been verified with <u>extremely high accuracy</u> in several systems:

- $Z \rightarrow ll$ decays $[\sim 0.1\%]$
- $\tau \rightarrow l\nu\nu$ decays [~ 0.1%]
- $K \rightarrow (\pi) l\nu$ decays [~ 0.1%] & $\pi \rightarrow l\nu$ decays [~ 0.01%]

This is why it has been often assumed as a "sacred principle"...

But there is <u>no deep reason</u>, to assume it holds BSM.

As we shall see, there are also no strong experimental tests in semileptonic processes involving 3rd generation quarks, which actually show intriguing hints of LFU violations

\triangleright *LFU tests in b* \rightarrow *c transitions*

The way we test LFU in charged-current $b \rightarrow c$ transitions is via the ratios

$$R_{12}(H_c) = \frac{\Gamma(B \to H_c \ell_1 \nu)}{\Gamma(B \to H_c \ell_2 \nu)}$$
$$H_c = D \text{ or } D^*$$

We are not able to compute very precisely, <u>separately</u>, numerators and denominators in these ratios because of hadronic uncertainties...

E.g.:
$$A(B \rightarrow D \ell \nu)_{\text{SM}} = G_{\text{eff}} V_{cb} \langle D \mid \overline{b}_L \gamma_\mu c_L \mid B \rangle \overline{\ell} \gamma^\mu \nu$$

But these uncertainties cancels (to a very good accuracy) in the ratios

The "anomaly" appears when comparing τ vs. light leptons (μ , e)

\triangleright <u>LFU tests in b \rightarrow c transitions</u>

LFU tests in b \rightarrow c transitions [τ vs. light leptons (μ , e)]:

\triangleright <u>LFU tests in b \rightarrow c transitions</u>

LFU tests in b \rightarrow c transitions [τ vs. light leptons (μ , e)]:

\triangleright <u>LFU tests in b \rightarrow c transitions</u>

LFU tests in b \rightarrow c transitions [τ vs. light leptons (μ , e)]:

• No single experimental results deviates significantly from the SM, but data are all well compatible and their combination leads to 3.1σ deviation vs. the SM

\triangleright <u>LFU tests in b \rightarrow c transitions</u>

LFU tests in b \rightarrow c transitions [τ vs. light leptons (μ , e)]:

- No single experimental results deviates significantly from the SM, but data are all well compatible and their combination leads to 3.1σ deviation vs. the SM
- The two channels are consistent with a <u>universal enhancement</u> (~10 20%) of the SM $b_L \rightarrow c_L \tau_L v_L$ amplitude

 \triangleright LFU tests in b \rightarrow c transitions – possible connection to the bsll anomaly?

A rather interesting aspect of the LFU anomaly observed in $b \rightarrow c\tau v$ is a possible connection to C_9 – anomaly observed in $b \rightarrow sll$

\triangleright <u>LFU tests in b \rightarrow s transitions</u>

Last but not least, LFU tests have been performed recently also in the neutral-current $b \rightarrow sll$ decays, probing in this case the μ vs. e universality.

The situation was very exciting till the end of 2022...

$$R_{\rm H} = \frac{\int d\Gamma(B \to H \,\mu\mu)}{\int d\Gamma(B \to H \,ee)}$$

Very clean SM predictions [theory uncertainty below 1%]

\triangleright *LFU tests in b* \rightarrow *s transitions*

Last but not least, LFU tests have been performed recently also in the neutral-current $b \rightarrow sll$ decays, probing in this case the μ vs. e universality.

The situation was very exciting till the end of 2022, when a more refined experimental analysis changed the picture...

$$R_{\rm H} = \frac{\int d\Gamma(B \to H \,\mu\mu)}{\int d\Gamma(B \to H \,ee)}$$

Very clean SM predictions [theory uncertainty below 1%]

This was a good reminder we should be very cautions in interpreting "anomalies"...

However, as for $B(B_s \rightarrow \mu\mu)$, note that the exp. error is still largely dominant $\rightarrow large room$ for improvements