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FREQUENTIST ANALYSIS (2)
BY EXAMPLE



Parameter(s) of Interest

Last time we succeeded in  creating a confidence set for the 2 
parameters of the likelihood
𝑝 𝐷 𝑠, 𝑏 	 = Poisson 𝑁, 𝑠 + 𝑏 	Poisson 𝑀, 𝑘𝑏
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Parameter(s) of Interest

In practice, however, we usually make inferences about a 
subset of the parameters, i.e., the parameters of interest 
(POI). Here there is only one: the mean signal s. The mean 
background b is an example of a nuisance parameter.

If we wish to make inferences about the signal, we must rid 
our likelihood of all nuisance parameters; in particular, we 
must get rid of b.
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Profile Likelihood: 𝐻 → 𝑍𝑍 → 4𝑙 
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The standard practice is to replace all nuisance parameters in 
the likelihood function by their conditional MLEs, that is, 
their MLE for given values of the parameters of interest. 

In this example, this means solving,

𝜕 ln 𝑝(𝐷|𝑠, 𝑏)	
𝜕𝑏

= 0

for a fixed 𝑠	to find 7𝑏 = 𝑓(𝑠).

The resulting function 𝐿! 𝑠 = 𝑝 𝐷 𝑠, 𝑓 𝑠 	is called the 
profile likelihood.

  

Exercise 4: Show that 

𝑓 𝑠 = "# "!#$ %#& '(
)(%#&)  

𝑔 = 𝑁 +𝑀 − 1 + 𝑘 𝑠



Profile Likelihood: 𝐻 → 𝑍𝑍 → 4𝑙 
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Note: when we replace the parameter b by an estimate of it
7𝑏 = 𝑓(𝑠)

we are making an approximation. 

Therefore, we cannot expect the frequentist principle to be  
satisfied exactly: there could be subsets of the parameter 
space where the coverage probability dips below the 
desired confidence level. 

Moreover, profiling has a sound justification…
  

 



Profile Likelihood: 𝐻 → 𝑍𝑍 → 4𝑙 
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The profiling procedure rests, again, upon Wilks’ theorem: 
given the profile likelihood ratio 

𝜆( 𝐷 =
𝐿! 𝑠
𝐿! >𝒔

where >𝒔 is the MLE of s, the distribution of the statistic

𝑡( 𝐷 = −2 ln 𝜆( 𝐷

approximates a χ2 density, this time, of 1 degree of freedom.
    

 



Profile Likelihood: 𝐻 → 𝑍𝑍 → 4𝑙
Since, according to Wilks’ theorem, 𝑡( 𝐷 ≈ 𝜒%)

we can compute an approximate 
68% confidence interval by solving
𝑡( 𝐷 = 1

for s. 

This results in the statement 
 𝑠 ∈ 10.9, 21  
 @ ~ 68% confidence level (CL).  
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Exercise 5: Show this by solving 𝑡( 𝐷 = 1 numerically



HYPOTHESIS TESTS
BY EXAMPLE



Is The Signal Real?

In experimental physics, it is rare that we can we make 
definitive statements about signals.

What we do instead is make probabilistic statements about 
whether, or not, a putative signal is real.

In high-energy physics, the consensus is that we declare a 
signal real, that is, we announce a discovery, if the 
background-only hypothesis is extremely unlikely.

 Therefore, we need a way to test hypotheses.
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Hypothesis Tests (1)

Protocol:
1. Decide which hypothesis is to be rejected and call it the 

null hypothesis, denoted by H0. At the LHC, this is 
usually the background-only hypothesis.

2. Construct a function of the data called a test statistic such 
that large values of it would cast doubt on the null 
hypothesis H0. 

3. Choose a test statistic threshold above which we agree to 
reject H0. Do the experiment, compute the test statistic, 
and reject the null if the threshold is exceeded.
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Hypothesis Tests (2)

There are two variations on this general procedure:

1. Fisher: reject the null if the test statistic is large enough.

2. Neyman: compare the null to an alternative hypothesis 
using a test statistic that depends on both hypotheses.  
Reject the null if the alternative is preferred.

In high-energy physics, we do both!
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Hypothesis Tests (3)
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Fisher’s Approach: Null hypothesis (H0), e.g., background-only

The null hypothesis is rejected if the p-value is judged 
to be small enough, i.e., if x0 is large enough.

x0 is the observed value of the test statistic x.

𝑥! 𝑥

𝑝(𝑥|𝐻!) Calculate:
p−value = 𝑃(𝑥 ≥ 𝑥,|𝐻,)
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Background, B = 9.4 events (ignoring uncertainty in background)

observed count

Example: 𝐻 → 𝑍𝑍 → 4𝑙

𝑝 𝑥, = 𝑁 𝐻, = Poisson(𝑁, 𝐵 = 9.4)

𝑁 = 25
p−value = S

&-.

/

Poisson(𝑘, 9.4) = 1.76×1001

S
&-.

/

Poisson(𝑘, 𝑎) = X
,

2
𝑡.0%𝑒03𝑑𝑡/Γ(𝑁)

  scipy.special.gammainc(N, a) 
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Background, B = 9.4 events (ignoring uncertainty)

observed count

We usually map a p-value to a Z-value, that is, to the number 
of standard deviations away from the null if the distribution 
were a Gaussian. This yields Z = 4.14. 
  We say we have a 4.14𝜎 signal.

Example: 𝐻 → 𝑍𝑍 → 4𝑙

𝑝 25 𝐻, = Poisson(25, 9.4)

𝑁 = 25

p−value = 1.76×1001



Hypothesis Tests (4)
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Alternative hypothesis

Choose a fixed value of α before data are analyzed. Reject 
the null in favor of the alternative if the p-value < α. 
Statisticians call α the significance (or size) of the test, 
while we particle physicists call the Z-value the significance!

Neyman argued 
that it is 
necessary to 
consider 
alternative 
hypotheses 
H1

Neyman’s Approach: Null hypothesis (H0) + alternative (H1) 

𝑝(𝑥|𝐻!)

𝑝(𝑥|𝐻")

𝑥! 𝑥

𝑥# 	 𝛼 = p−value 𝑥#



The Neyman-Pearson Test

18

The optimal test for fully
specified hypotheses,
that is, simple hypotheses, 
is to reject the null if the 
ratio
𝑝 𝑥 𝐻% / 𝑝 𝑥 𝐻, > 𝜆
for some threshold 𝜆.

𝑝(𝑥|𝐻!)

𝑝(𝑥|𝐻")

𝑥

𝑥#

𝛼 = 1
$!

%
𝑝 𝑥 𝐻! 𝑑𝑥 𝑝 = 1

$!

%
𝑝 𝑥 𝐻" 𝑑𝑥

power of testsignificance of test



Hypothesis Tests (5)

All realistic analyses contain nuisance parameters that we 
must get rid of if we are interested in inferences about the 
parameters of interest only.

There two primary ways to proceed:

Profiling:  Use the profile likelihood.

Marginalizing:  Use the marginal likelihood, i.e., a
   likelihood integrated over the nuisance
   parameters.
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We need to compute 
 p-value = P[𝒙 > 𝑥,] 
 given the observed value 𝑥, = 𝑡("(𝐷) of 𝑥 = 𝑡(" . 

If the p-value < α we agree to reject the s = s0 hypothesis and 
we also report the p-value.

But, since 𝑍 = 	𝑡("(𝐷), we can avoid the calculation of the 
p-value and just report Z!

 

Example: 𝐻 → 𝑍𝑍 → 4𝑙 (Profiling)



Background, B = 9.4 ± 0.5 events. For this example, 𝒔𝟎 = 𝟎.
   t0(D) = 17.05 
    
       therefore, 𝑍 = 𝑡,(𝐷) = 4.13

Exercise 6: Verify this calculation
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7𝑏 = 𝑓 𝑠 = "# "!#$ %#& '(
)(%#&)  

𝑔 = 𝑁 +𝑀 − 1 + 𝑘 𝑠
𝐿! 𝑠 = 𝐿(𝑠, 𝒇 𝒔 )

𝑡( 𝐷 = −2 ln[𝐿! 𝑠 /𝐿! 𝑠̂ ]

Example: 𝐻 → 𝑍𝑍 → 4𝑙 (Profiling)



BAYESIAN ANALYSIS
BY EXAMPLE



Bayesian Inference (1)

Bayesian methods are
1. based on the degree of belief interpretation of probability 
2. and use Bayes’ theorem

𝑝 𝜃𝐻, 𝐻 	𝐷) =
𝑝 𝐷	 𝜃𝐻, 𝐻)𝜋(𝜃𝐻, 𝐻)

𝑝(𝐷)
for all inferences, where
 D observed data   
 θH parameters pertaining to hypothesis H 

  (parameters of interest and nuisance parameters)
 H hypothesis    
 π prior density

   23



Step 1: Construct a probability model for the observations

	 	 𝑝 𝐷 𝑠, 𝑏 	 = (#5 #6$(&'()

.!
(&5)*6$+(

8('#%)

knowns:
  N  = 25 observed event count 
  𝑀 = 353 effective background event count
  𝑘	 = 37.6 effective background scale factor
 unknowns:
  b  mean background count
  s  mean signal count
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Example: Bayesian Analysis 𝐻 → 4𝑙 



Step 2: Write down Bayes’ theorem:

	𝑝(𝑠, 𝑏|𝐷) =
𝑝 𝐷	 𝑠, 𝑏)	𝜋(𝑠, 𝑏)

𝑝(𝐷)
and specify the prior:
    𝜋(𝑠, 𝑏) = 𝜋(𝑏|𝑠) 𝜋(𝑠)	   

 
Sometimes it is convenient to compute the marginal 

likelihood of the parameters of interest by integrating over 
the nuisance parameters, here b,

                            𝑝 𝐷 𝑠 = ∫,
/𝑝 𝐷	 𝑠, 𝑏)	𝜋(𝑏 𝑠 𝑑𝑏
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Example: Bayesian Analysis 𝐻 → 4𝑙 



The Prior: 
What does
   𝜋(𝑠, 𝑏) = 𝜋(𝑏|𝑠) 𝜋(𝑠)
represent?

The prior encodes what we know, or assume, about the mean 
background and signal in the absence of new observations.

We shall assume that s and b are non-negative.

Unfortunately, there is no unique way to encode such vague 
information.
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Example: Bayesian Analysis 𝐻 → 4𝑙 



For simplicity, we shall take π(b | s) = 1, though one can do 
better*. 

The marginal likelihood can be computed exactly:

𝑝 𝐷	 𝑠	)

=
1 − 𝑥 2

𝑀
S
9-,

.

beta(𝑥, 𝑟 + 1,𝑀)	Poisson(𝑁 − 𝑟, 𝑠)

 where, 𝑥 = %
%#&

.	

*Luc Demortier, Supriya Jain, HBP, 
Reference priors for high energy physics, Phys.Rev.D82:034002 (2010)
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Example: Bayesian Analysis 𝐻 → 4𝑙 



L(s) = P(25 | s) is the
marginal likelihood for 
the expected signal s. 

Here, we compare the
marginal and profile
likelihoods. For this
problem they are almost
identical. 

But this does not always 
happen!
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Example: Bayesian Analysis 𝐻 → 4𝑙 



Given 𝑝 𝐷	 𝑠) we can compute the posterior density of the 
signal

𝑝 𝑠	 𝐷) =
𝑝 𝐷	 𝑠)𝜋(𝑠) 

𝑝(𝐷) 

Again, for simplicity, let’s assume 𝜋 𝑠 = 1, then

𝑝 𝑠	 𝐷) =
∑9-,. beta 𝑥, 𝑟 + 1,𝑀 Poisson(𝑁	 − 𝑟, 𝑠)  

∑9-,. beta 𝑥, 𝑟 + 1,𝑀
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Example: Bayesian Analysis 𝐻 → 4𝑙 

Exercise 7: Derive an expression
for p(s | D) assuming a gamma
prior Gamma(qs, U + 1) for π(s)



Computing Central Credible Intervals
Solve

X
,

:(.)
𝑝 𝑠	 𝐷)	𝑑𝑠 = (1 − CL)/2

X
,

;(.)
𝑝 𝑠	 𝐷)	𝑑𝑠 = (1 + CL)/2

with CL = 0.683, we obtain 𝑠	 ∈ 11.5, 21.7 	at	68% credible 
level (CL). 

Since this is a Bayesian calculation, this statement means: 
 the probability that s lies in [11.5, 21.7] is 0.68.
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Example: Bayesian Analysis 𝐻 → 4𝑙 
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Example: Bayesian Analysis 𝐻 → 4𝑙 



Finally, we can test different hypotheses 𝐻	about the signal s 
by marginalizing over the parameters of each hypothesis. 
In our case, the parameters are 𝜃<" = 𝑏 and 𝜃<, = 𝑏, 𝑠 for 
hypotheses H0 and H1, respectively. 

Since we have already marginalized over b, we just need to 
compute

𝑝 𝐷	 𝐻1) = X
,

/
𝑝 𝐷 𝑠,𝐻1	 𝜋 𝑠|𝐻1 𝑑𝑠

The simplest choice for the prior is π (s | H1) = δ(s – 15.6), 
which yields

  𝑝 𝐷 𝐻% ≡ 𝑝 𝐷 	𝒔 = 𝟏𝟓. 𝟔) = 7.91×100). 
Note also that 
𝑝 𝐷 𝐻, 	≡ 𝑝 𝐷 	𝒔 = 𝟎) = 1.59×1001
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Example: Bayesian Analysis 𝐻 → 4𝑙 



From
 p(D | H1 ) = 7.91×100) and
 p(D | H0 ) = 1.59×1001	
 
we conclude that the CMS results increase the probability of 

hypothesis H1  relative to H0 by ~5000. 
 
The increased odds can be converted to a Z-value (S. Sekmen, 

HBP) roughly equivalent to the frequentist measure using
𝑍 = sign(ln𝐵%,) 2 ln𝐵%,

This yields Z = 4.13. 

Exercise 8: Verify this number
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Example: Bayesian Analysis 𝐻 → 4𝑙 



Bayesian Multi-bin Analysis
The single-bin, 2-channel Poisson model can be readily 
generalized to a multi-bin multi-channel model (see, e.g. [1]):

𝑝 𝐷 𝑎, 𝑝 = w
=

𝑒0>-𝑑=
?-

𝐷=!
w
=

w
@

𝑒02.-𝑎@=
A.-

𝐴@=!
,	

𝑑= =S
@

𝑝@𝑎@=

1. P.C. Bhat, H.B. Prosper, S.S. Snyder, Bayesian analysis of multi-source data, 
Phys. Lett. B407, Issue 1, 21 (1997), Pages 73-78

2. https://atlas-opendata.web.cern.ch/atlas-opendata/samples/2020/4lep/

https://atlas-opendata.web.cern.ch/atlas-opendata/samples/2020/4lep/


Summary (1)

Probability
Interpretations: degree of belief, relative frequency

Likelihood Function
Statistical model into which data have been inserted. 

Frequentist Principle
Construct statements such that a fraction f ≥ CL of them 

will be true over a population of statements.
Profile Likelihood

hStandard way to eliminate nuisance parameters. But 
strict adherence to frequentist principle not guaranteed.
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Summary (2)

Frequentist Analysis (2)
hHypothesis Tests 

hDecide on a fixed threshold α and reject the null 
hypothesis if the p-value < α and report the p-value.

Bayesian Analysis
h Uses Bayes’ theorem for all inferences.
h Needs both a likelihood and a prior. 
h Must compare at least two hypotheses.
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