... to make an end is to make a beginning. The end is where we start from. T.S. Eliot, Little Gidding

Higgstorical Summary

• « Empty » space is unstalled

- Dark matter
- Origin of matter
- Sizes of masses
- Masses of neutrinos
- Inflation
- Quantum gravity

LHC LHC LHC

The Standard Model

ALGERT R. BROCCOLL'S CON PRODUCTIONS - CON PRECE BROSNAN & IAN FLEMING'S JAMES BOND OO?" The World is not enough - Sofrie Marcau Hobert Carryle Dense Richards Robbie Cottrant - Judi Dench The World Is not enough - Sofrie Marcau Hobert Carryle Dense Richards Robbie Cottrant - Judi Dench The World Is not enough - Sofrie Marcau Hobert Carryle Dense Richards Robbie Cottrant - Judi Dench The World Is not enough - Sofrie Marcau Hobert Carryle Dense Richards Robbie Cottrant - Judi Dench The World Is not enough - Sofrie Marcau Hobert Carryle Dense Richards Robbie Cottrant - Judi Dench The World Is not enough - Sofrie Marcau Hobert Carryle Dense Richards Robbie Cottrant - Judi Dench The World Is not enough - Sofrie Marcau Hobert Carryle Dense Richards Robbie Cottrant - Judi Dench The World Is not enough - Sofrie Marcau - Sofrie -

Everything about Higgs is Puzzling

$$\mathcal{L} = yH\psi\overline{\psi} + \mu^2|H|^2 - \lambda|H|^4 - V_0 + \dots$$
• Pattern of Yukawa couplings y:
- Flavour problem
• Magnitude of mass term μ :

- Naturalness/hierarchy problem
- Magnitude of quartic coupling λ :
 - Stability of electroweak vacuum
- Cosmological constant term V₀:
 - Dark energy

Higher-dimensional interactions?

Theoretical worries about the Higgs boson

Elementary Higgs or Composite?

• Higgs field:

 $v = <0|H|0> \neq 0$

- Quantum loop problems
- M_h, v, other masses have quadratic divergences

- Fermion-antifermion condensate?
- Just like π in QCD, Cooper pairs in BCS superconductivity
- Need new 'technicolour' force

Heavy scalar resonance?
 (Problems with precision electroweak data)
 Pseudo-Nambu-Goldstone boson?

Naturalness of hierarchy of mass scales

Loop Corrections to Higgs Mass²

• Consider generic fermion and boson loops:

• Each is quadratically divergent: $\int^{\Lambda} d^4k/k^2$

$$\Delta m_H^2 = -\frac{y_f^2}{16\pi^2} [2\Lambda^2 + 6m_f^2 \ln(\Lambda/m_f) + ...]$$

$$\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} [\Lambda^2 - 2m_S^2 \ln(\Lambda/m_S) + \dots]$$

• Leading divergence cancelled if $\lambda_S = y_f^2 \ge 2$ Supersymmetry!

What lies beyond the Standard Model?

Supersymmetry

Stabilize electroweak vacuum

New motivations from LHC

- Successful prediction for Higgs mass
 - Should be < 130 GeV in simple models</p>
- Successful predictions for couplings
 Should be within few % of SM values
- Naturalness, GUTs, string, dark matter, $g_{\mu} 2$, ...

Nothing (yet) at the LHC

Is "Empty Space" Unstable?

 Dependence of instability scale on masses of Higgs boson and top quark, and strong coupling:

 $\text{Log}_{10}\frac{\Lambda}{\text{GeV}} = 10.5 - 1.3\left(\frac{m_t}{\text{GeV}} - 172.6\right) + 1.1\left(\frac{m_H}{\text{GeV}} - 125.1\right) + 0.6\left(\frac{\alpha_s(m_Z) - 0.1179}{0.0009}\right)$

- New CMS value of m_t : CMS Collaboration, April 2022 $m_t = 171.77 \pm 0.38 \,\text{GeV}$
- Particle Data Group values:

 $m_H = 125.25 \pm 0.17 \,\text{GeV}, \ \alpha_s(m_Z) = 0.1179 \pm 0.0009$

• Instability scale:

 $\mathrm{Log}_{10}\frac{\Lambda}{\mathrm{GeV}} = 11.7 \pm 0.8$

• Dominant uncertainties those in α_s and m_t

Buttazzo et al. arXiv:1307.3536

Looking Beyond the Standard Model with the SMEFT

France

- "...the direct method may be used...but indirect methods will be needed in order to secure victory...."
- "The direct and the indirect lead on to each other in turn. It is like moving in a circle...."
- Who can exhaust the possibilities of their combination?"
- Sun Tzu

A Note on Units and Dimensional Analysis

- Use "natural" units: Planck's constant, velocity of light = 1
- Count mass dimensions: $[M] = 1 = [E] = [p] = [\partial]$
- Consistent with Lorentz invariance: $E^2 = p^2 + m^2$
- Quantum mechanics: [x] = [t] = -1
- Action $A = \int \mathcal{L}d^4x$ has [A] = 0, so $[\mathcal{L}] = 4$ $\mathcal{L} \ni \partial \phi \partial \phi, \psi \partial \psi, F_{\mu\nu}F^{\mu\nu}$
- So $[\phi] = 1$, $[\psi] = 3/2$, $[A_{\mu}] = 1$

Effective Field Theories (EFTs) a long and glorious History

- 1930's: "Standard Model" of QED had d=4
- Fermi's four-fermion theory of the weak force
- Dimension-6 operators: form = S, P, V, A, T?
 Due to exchanges of massive particles?
- V-A → massive vector bosons → gauge theory
- Yukawa's meson theory of the strong N-N force
 - Due to exchanges of mesons? \rightarrow pions
- Chiral dynamics of pions: $(\partial \pi \partial \pi)\pi\pi$ clue \rightarrow QCD

Standard Model Effective Field Theory a more powerful way to analyze the data

- Assume the Standard Model Lagrangian is correct (quantum numbers of particles) but incomplete
- Look for additional interactions between SM particles due to exchanges of heavier particles
- Analyze Higgs data together with electroweak precision data and top data
- Most efficient way to extract largest amount of information from LHC and other experiments
- Model-independent way to look for physics beyond the Standard Model (BSM)

Summary of Analysis Framework

• Include all leading dimension-6 operators?

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i=1}^{2499} \frac{C_i}{\Lambda^2} \mathcal{O}_i$$

- Simplify by assuming flavour SU(3)⁵ or SU(2)² X SU(3)³ symmetry for fermions
- Work to linear order in operator coefficients, i.e. $\mathcal{O}(1/\Lambda^2)$
- Use G_F , M_Z , α as input parameters

Dimension-6 SMEFT Operators

- Including 2- and 4fermion operators
- Different colours for different data sectors
- Grey cells violate
 SU(3)⁵ symmetry
- Important when including top observables

		H^6 and H^4D^2			$\psi^2 H^3$		
\mathcal{O}_{G}	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	\mathcal{O}_{H}		$(H^{\dagger}H)^3$	\mathcal{O}_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	
$\mathcal{O}_{ ilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$\mathcal{O}_{H\Box}$		$(H^{\dagger}H)\square(H^{\dagger}H)$	${\cal O}_{uH}$	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\tilde{H})$	
\mathcal{O}_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	\mathcal{O}_{HD}	(H	$^{\dagger}D^{\mu}H)^{\star}\left(H^{\dagger}D_{\mu}H\right)$	\mathcal{O}_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H)$	
$\mathcal{O}_{\widetilde{W}}$	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$						
	X^2H^2			$\psi^2 X H$		$\psi^2 H^2 D$	
\mathcal{O}_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	${\cal O}_{eW}$	($\bar{l} \sigma^{\mu\nu} e_r \tau^I H W^I_{\mu\nu}$	${\cal O}_{Hl}^{(1)}$	$(H^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} H)(\bar{l}_{p} \gamma^{\mu} l_{r})$	
${\cal O}_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	${\cal O}_{eB}$		$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	${\cal O}_{_{Hl}}^{_{(3)}}$	$(H^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} H)(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$	
\mathcal{O}_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	Anomal	ous	$_{p}\sigma^{\mu\nu}T^{A}u_{r})\widetilde{H}G^{A}_{\mu\nu}$	${\cal O}_{_{He}}$	$(H^{\dagger}i D_{\mu} H) (\bar{e}_p \gamma^{\mu} e_r)$	
${\mathcal O}_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu u}W^{I\mu u}$			$(p\sigma^{\mu u}u_r)\tau^I \widetilde{H} W^I_{\mu u}$	${\cal O}_{Hq}^{(1)}$	$(H^{\dagger}i \overset{\overleftarrow{D}}{D}_{\mu} H)(\bar{q}_p \gamma^{\mu} q_r)$	
\mathcal{O}_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	magne	tic	$(\bar{q}_p \sigma^{\mu u} u_r) \hat{l}^{\dagger} B_{\mu u}$	${\cal O}_{Hq}^{(3)}$	$(H^{\dagger}i D^{I}_{\mu} H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$\mathcal{O}_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	mome	nts	$_{p}\sigma^{\mu u}T^{A}d_{r}HG^{A}_{\mu u}$	${\cal O}_{Hu}$	$(H^{\dagger}i D_{\mu} H)(\bar{u}_p \gamma^{\mu} u_r)$	
\mathcal{O}_{HWB}	$H^{\dagger} au^{I} H W^{I}_{\mu u} B^{\mu u}$			$d_p \sigma^{\mu\nu} d_r) \tau H W^I_{\mu\nu}$	${\cal O}_{Hd}$	$(H^{\dagger}i D_{\mu} H)(\bar{d}_p \gamma^{\mu} d_r)$	
$\mathcal{O}_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	$\mathcal{O}_{_{dB}}$		$(\bar{q}_p \sigma^{\mu\nu} d_{\mu}) H B_{\mu\nu}$	${\cal O}_{_{Hud}}$	$i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$	
	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(RR)$			$(\bar{L}L)(\bar{R}R)$	
\mathcal{O}_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	\mathcal{O}_{ee}	($(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	\mathcal{O}_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$	
$\mathcal{O}_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{uu}	($\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{lu}	$(ar{l}_p\gamma_\mu l_r)(ar{u}_s\gamma^\mu u_ u)$	
$\mathcal{O}_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$) O_{dd}	($(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	\mathcal{O}_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$	
$\mathcal{O}_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{eu}		$c_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	${\cal O}_{qe}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$	
$\mathcal{O}_{lq}^{(3)}$	$(l_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{ed}		$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(u_s \gamma^\mu u_t)$	
		$\mathcal{O}_{ud}^{(1)}$	($\bar{u}_p \gamma_\mu u_r) (a_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
Fla	vour anomalies	$\mathcal{O}_{ud}^{(8)}$	$(\bar{u}_p\gamma)$	$\gamma_{\mu}T^{A}u_{r})(\overline{d}_{s}\gamma^{\mu}T^{A}d_{t})$	${\cal O}_{qd}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{d}_s\gamma^\mu d_t)$	
					$\mathcal{O}_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (d_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)$		B violeting Baryon					
\mathcal{O}_{leda}	\mathcal{O}_{duq}	$\mathcal{O}_{duq} = \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(q_s^{\gamma j})^T C l_t^{\kappa} \right]$					
sead	p // ort		$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha j})^T C q_r^{eta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$ decay				
$\mathcal{O}_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (q_s^{\kappa} d_t)$	\mathcal{O}_{qqu}		$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha} ight]$	$(j)^T C q_r^{\beta \vec{k}}$	$\left[(u_s^{\gamma})^T C e_t ight]$ decay	
$\mathcal{O}_{quqd}^{(1)} \ \mathcal{O}_{quqd}^{(8)}$	$\begin{array}{c} (\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(q_{s}^{k}d_{t}) \\ (\bar{q}_{r}^{j}T^{A}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}T^{A}d_{t}) \end{array}$	$\left(egin{array}{c} \mathcal{O}_{qqu} \ \mathcal{O}_{qqq} \end{array} ight) \left(egin{array}{c} \mathcal{O}_{qqq} \end{array} ight) ight)$		$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(q_{p}^{\alpha}\right)\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[\left(q_{p}^{\alpha}\right)\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\right]$	${}^{j})^{T}Cq_{r}^{\beta k}$ ${}^{\alpha j}_{p})^{T}Cq_{r}^{\beta}$	$\left[egin{array}{c} (u_s^\gamma)^T C e_t \ decay \end{array} ight] \left[(q_s^{\gamma m})^T C l_t^r ight]$	
$\begin{matrix} \mathcal{O}_{quqd}^{(1)} \\ \mathcal{O}_{quqd}^{(8)} \\ \mathcal{O}_{quqd}^{(8)} \\ \mathcal{O}_{leq}^{(1)} \end{matrix}$	$\begin{array}{c} (\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(q_{s}^{k}d_{t}) \\ (\bar{q}_{r}^{j}T^{A}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}T^{A}d_{t}) \\ (\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t}) \end{array}$	t) $egin{array}{c} \mathcal{O}_{qqu} & \mathcal{O}_{qqq} & \mathcal{O}_{duu} & \mathcal{O}_{duu}$		$ \begin{array}{c} \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha}\\ \varphi^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha})\right]\right] \\ \varepsilon^{\alpha\beta\gamma}\left[(q_p^{\alpha})\right] \end{array} $	${}^{j})^{T}Cq_{r}^{\beta k}$ ${}^{\alpha j}_{p})^{T}Cq_{r}^{\beta}$ ${}^{T}Cu_{r}^{\beta}$	$\left[egin{array}{c} (u_s^\gamma)^T C e_t \ k \end{bmatrix} & decay \ (u_s^\gamma)^T C e_t \end{bmatrix} & decay \ (u_s^\gamma)^T C e_t \end{bmatrix}$	

Global SMEFT Fit to Top, Higgs, Diboson, Electroweak Data

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

- Global fit to dimension-6 operators using precision electroweak data, W⁺W⁻ at LEP, top, Higgs and diboson data from LHC Runs 1.2
- Search for BSM
- Constraints on BSM
 - At tree level
 - At loop level

341 measurements included in global analysis

Operators included in Global Fit

• 20 operators in flavour-universal SU(3)⁵ fit

EWPO:
$$\mathcal{O}_{HWB}$$
, \mathcal{O}_{HD} , \mathcal{O}_{ll} , $\mathcal{O}_{Hl}^{(3)}$, $\mathcal{O}_{Hl}^{(1)}$, \mathcal{O}_{He} , $\mathcal{O}_{Hq}^{(3)}$, $\mathcal{O}_{Hq}^{(1)}$, \mathcal{O}_{Hd} , \mathcal{O}_{Hu} ,Bosonic: $\mathcal{O}_{H\Box}$, \mathcal{O}_{HG} , \mathcal{O}_{HW} , \mathcal{O}_{HB} , \mathcal{O}_{W} , \mathcal{O}_{G} ,Yukawa: $\mathcal{O}_{\tau H}$, $\mathcal{O}_{\mu H}$, \mathcal{O}_{bH} , \mathcal{O}_{tH} ,Top 2F: $\mathcal{O}_{HQ}^{(3)}$, $\mathcal{O}_{HQ}^{(1)}$, \mathcal{O}_{Ht} , \mathcal{O}_{tG} , \mathcal{O}_{tW} , \mathcal{O}_{tB} ,Top 4F: $\mathcal{O}_{Qq}^{3,1}$, $\mathcal{O}_{Qq}^{3,8}$, \mathcal{O}_{Qq}^{8} , \mathcal{O}_{Qq}^{8} , \mathcal{O}_{Qq}^{8} , \mathcal{O}_{Qq}^{8} , \mathcal{O}_{Qq}^{8} , \mathcal{O}_{Qq}^{8} , \mathcal{O}_{Qd}^{8} , \mathcal{O}_{td}^{8} .

20

Data included in Global Fit

EW precision observables								
Precision electroweak measurem	LHC Run 2 Higgs	Tevat	ron & Run 1 top	n_{obs}	Ref.			
$\Gamma_Z, \sigma_{\text{had}}^0, R_\ell^0, A_{FB}^\ell, A_\ell(\text{SLD}), A$	ATLAS combination of	Tevatr	on combination of differential $t\bar{t}$ forward-backward asymmetry,	4	[7]			
Combination of CDF and D0 W	including ratios of bra	ATLA	n		<u> </u>	Def		
LHC run 1 W boson mass measu	Signal strengths coars	<u>d</u>			nobs	Kei.		
	CMS LHC combinatio	ATLA	CMS tt differential distributions in the dilepton channel.		6	36,		
Diboson LEP & LHC	Production: ggF , VB	$\frac{d\sigma}{dm_{i\bar{i}}}$			10	231		
$W^+ W^-$ angular distribution me	Decay: $\gamma\gamma$, ZZ , W^+W	CMS i	CMS $t\bar{t}$ differential distributions in the ℓ +jets channel. <u>$d\sigma$</u>		10	[37]		
$W^+ W^-$ total cross section meas	CMS stage 1.0 STXS	$\frac{d\sigma}{dm_{i\bar{i}}}$	$\frac{dm_{t\bar{t}}}{\Delta TLAS}$ measurement of differential $t\bar{t}$ charge asymmetry A_{c}	m. =)	5	[28]		
final states for 8 energies	13 parameter fit 7 pa	CMS 1	ATLAS till by $t\bar{t}Z$ cross section measurements σ_{22}	(n _{tt}).	2	[30]		
W^+W^- total cross section meas	CMS stage 1.0 STXS	ATLA	CMS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W}\sigma_{t\bar{t}Z}$		111	[40]		
gggg final states for 7 energies	CMS stage 1.1 STXS	dilepte	CMS $t\bar{t}Z$ differential distributions		44	[40]		
W^+W^- total cross section measurements	CMS differential cross	ATLA	$\frac{d\sigma}{d\sigma^T}$ $\frac{d\sigma}{d\sigma\sigma}\theta^*$		112	[**]		
& qqqq final states for 8 energies	tion in the $WW^* \to \ell$	CMS 1	$\frac{ap_z}{CMS}$ measurement of differential cross sections and charge rat	ios for t-	5 5	[42]		
ATLAS W^+W^- differential cro	$\frac{d\sigma}{dn_{iet}}$ $\frac{d\sigma}{dp_{iet}^T}$	$\frac{d\sigma}{dm - du}$	channel single-top quark production.		-1-	1		
$p_T > 120$ GeV overflow bin	ATLAS $H \to Z\gamma$ sign	ATLA	$\frac{d\sigma}{dp_{t+\bar{t}}^T} \mid R_t\left(p_{t+\bar{t}}^T\right)$					
ATLAS $W^+ W^-$ fiducial different ATLAS $H \to \mu^+ \mu^-$ si			CMS measurement of t -channel single-top and anti-top cross se	ections.	4	[43]		
do do		fo fr	$\sigma_t, \sigma_{\bar{t}}, \sigma_{t+\bar{t}} \& R_t.$					
			CMS measurement of the t -channel single-top and anti-top cross	sections.	1 1 1 1	[44]		
ATLAS $W^{\perp} Z$ fiducial differential cross section in the ℓ^{\perp}			$f_0, f_L = \sigma_t \sigma_t \sigma_t R_t.$					
$\frac{d b_T}{d p_Z^T}$		ATLA	CMS <i>t</i> -channel single-top differential distributions.		4 4	[45]		
CMS $W^{\pm}Z$ normalised fiducial differential cross section		CMS	$\frac{d\sigma}{dp_{t+\bar{t}}^T} = \frac{d\sigma}{d y_{t+\bar{t}} }$					
channel, $\frac{1}{\sigma} \frac{d\sigma}{dp_{\sigma}^{T}}$			ATLAS tW cross section measurement. 341 m	easur	reme	nts		
ATLAS Z_{jj} fiducial differential cross section in the $\ell^+\ell^-$			CMS tZ cross section measurement.					
		CMS	CMS tW cross section measurement.	dudo	din	_		
LHC Run 1 Higgs		$\frac{d\sigma}{dp_{t+\bar{t}}^T}$	$\frac{d\sigma}{dp_{t+1}^T}$ ATLAS tZ cross section measurement.			-		
ATLAS and CMS LHC Run 1 combination of Higgs sign			CMS $tZ(Z \to \ell^+ \ell^-)$ cross section measurement			-		
Production: ggF, VBF, ZH, WH & ttH			$\sigma_t \sigma_t \sigma_{t+\bar{t}} R_t$					
Decay: $\gamma\gamma$, ZZ, W^+W^- , $\tau^+\tau^-$	$\& b\bar{b}$	CMS #	ATLAS s-channel single-top cross section measurement.					
ATLAS inclusive $Z\gamma$ signal stren	gth measurement	ATLAS tW cross section measurement in the single lepton channel						
, 0		ATLA	S tW cross section measuremen IF Madigan Mimasu Sana	v & You, arX	(iv:2012.02	779		

Dimension-6 Constraints with Flavour-Universal SU(3)⁵ Symmetry

- Individual operator coefficients
- Marginalised over all other
 operator
 coefficients

No significant deviations from SM

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

Single-Field Extensions of the Standard Model

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

Single-Field Extensions of the Standard Model

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

Model-Independent BSM Survey

Switch on random subsets of 2, 3, 4 or 5 operators

arXiv:2012.02779

CDF Measurement of m_W

compared with other measurements

Tension: 7- σ discrepancy with Standard Model?

CDF Measurement of the Mass of the W Boson

Biggest uncertainties: lepton energy, pT model, parton distributions, backgrounds

Theoretical Interpretations of W Mass

taking CDF measurement at face value

90 papers and counting!

3667	DM	Zhu	7970	GUT, finite group	Wilson
3693	Inert H	Fan	8067	Extra U(1)	Zhang
3797	EWPO	Lu	8266	Seesaw	Borah
3996	Relation to g-2	Athron	8390	Zee model	Chowd
4183	Axion, chameleon	Yuan	8406	2HDM	Arcadi
4191	EWPO	Strumia	8440	Beta decay	Ciriglia
4202	SUSY	Yang			
4204	FWPO	de Blas	8546	Oblique	Carpen
4286	SUSY GMSB	Du	8568	Seesaw	Popov
 4356	SUSY NMSSM	Tang	9001	2HDM	Ghorba
4514	non-standard H	Caccianaglia	9029	Stueckelberg	Du
4559	RH neutrinos	Blennow	9031	Leptoquarks	Bhaska
4555	SUSY NMSSM	Cao			
 4/10	3031 1010133101	cao	9376	Triplet	Batra
5021	Coocou triplat	Chang	9477	VLQ	Cao
5031	Seesaw triplet	Cong	9487	Extra U(1)	Zeng
5085	ZHUM	Song	9585	Extra U(1)	Baek
5260	SIMEFT	Bagnaschi	9671	DM fermions	Borah
5267	Custodial symm	Paul			
5269	ZHDM	Bahl	10130	SMEFT	da Silva
5283	S&T	Asadi	10156	Dark photon	Cheng
5284	Higgs physics	Di Luzio	10274	Triplet seesaw	Heeck
5285	FlexibleSUSY	Athron	10375	FOPT triplet	Addazi
5296	S&T, SMEFT	Gu			
5302	D3-Brane	Heckman	10338	2HDM	Lee
5303	2HDM	Babu	10000	2112111	
			11570	Extra U(1)	Cai
5728	2HDM	Heo	11755	2HDM	Benhril
5760	Georgi-Machacek	Du	11/55	2110101	Denom
5942	Leptoquark	Cheung	11971	nu-lenton collider	Vang
5962	VL quarks	Crivellin	110/1	Scotogenic DM	Batra
5965	Single-field	Endo	11001	Atomic DV	Tran Tr
5975	2HDM + singlet	Biekötter	12010	2HDM	Abourt
5992	SMEFT	Balkin	12018	Colour octot	Gishert
			12455	colour-octet	Gisberi
6327	Non-local SM	Krasnikov	12000	Coursi Masharah	Char
6485	2HDM	Ahn	12898	Georgi-Machacek	Chen
6505	2HDM	Han	13027	Extra U(1)	Znou
6541	RPV MSSM	Zheng	49666	20	.
		_	13690	RG running	Gupta
7022	Lepton portal DM	kawamura			
7144	Triplet H	Fileviez	5.00758	Flipped SU(5)	Basiou
			783	DM	Wang

Chowdhury			
Arcadi			
Cirigliano			
Carpenter	1115	2HDM	Botella
Popov	1427	2HDM	Kim
Ghorbani	1457	ZHUW	NITT
Du	1600	Branoworld	Barman
Bhaskar	1701	SHOM	Vim
	1011	ZHUW Dask photon	Thomas
Batra	1911	Lantagenerates VII O	Thomas
Cao	2088	Leptoquark+vLQ	He
Zeng	2205	bs anomalies	L
Baek	2217	DM + g-2	Dcruz
Borah			
	2788	ResBos2	Isaacson
da Silva			-
Cheng	3877	GUT triplet	Evans
Heeck	3917	VLQ	Chowdhury
Addazi	3942	PDFs	Gao
	4016	Lepton portal	Kim
Lee			
	4473	LLP	Giudice
Cai	4824	SO(10) axion	Lazarides
Benbrik	5022	SU(5)	Senjanovic
_	5041	Triplet	Ghosh
Yang			
Batra -	5610	Coloured scalars	Miralles
Tran Tan -			
Abouabid -	8215	SESM	Li
Gishert			
Gisbert	9109	SUSY 331	Rodriguez
cl			100

Basiouris Wang

SMEFT Operators that can Contribute to W Mass

Relevant SMEFT operators

$$\mathcal{O}_{HWB} \equiv H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}, \quad \mathcal{O}_{HD} \equiv \left(H^{\dagger} D^{\mu} H\right)^{\star} \left(H^{\dagger} D_{\mu} H\right)$$
$$\mathcal{O}_{\ell\ell} \equiv \left(\bar{\ell}_{p} \gamma_{\mu} \ell_{r}\right) \left(\bar{\ell}_{s} \gamma^{\mu} \ell_{t}\right), \quad \mathcal{O}_{H\ell}^{(3)} \equiv \left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H\right) \left(\bar{\ell}_{p} \tau^{I} \gamma^{\mu} \ell_{r}\right)$$

Contributions to W mass

$$\frac{\delta m_W^2}{m_W^2} = -\frac{\sin 2\theta_w}{\cos 2\theta_w} \frac{v^2}{4\Lambda^2} \left(\frac{\cos \theta_w}{\sin \theta_w} C_{HD} + \frac{\sin \theta_w}{\cos \theta_w} \left(4C_{Hl}^{(3)} - 2C_{ll} \right) + 4C_{HWB} \right)$$

• Contributions to *S* and *T* oblique parameters

$$\frac{v^2}{\Lambda^2}C_{HWB} = \frac{g_1g_2}{16\pi}S \quad , \quad \frac{v^2}{\Lambda^2}C_{HD} = -\frac{g_1g_2}{2\pi(g_1^2 + g_2^2)}T$$

SMEFT Fit with the Mass of the W Boson

Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.05260

Single-Field Extensions of the Standard Model

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

Single-Field Models that can Contribute to W Mass

Model	C_{HD}	C_{ll}	$C_{H u}^{(3)}$	$C_{Hl}^{\left(1 ight)}$	C_{He}	$C_{H\square}$	$C_{ au H}$	C_{tH}	C_{bH}
S_1		X							
Σ	Wrong	sign	X	$\frac{3}{16}$			$\frac{y_{\tau}}{4}$		
Σ_1	wrong		X	$-\frac{3}{16}$			$\frac{y_{\tau}}{8}$		
N			$-\frac{1}{4}$	$\frac{1}{4}$					
E			$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_{\tau}}{2}$		
B_1	X					$-\frac{1}{2}$	$-\frac{y_{\tau}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$
В	-2	Righ	nt sign				$-y_{ au}$	$-y_t$	$-y_b$
Ξ	-2					$\frac{1}{2}$	$y_{ au}$	y_t	y_b
W_1	$-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$
W	X					$-\frac{1}{2}$	$-y_{ au}$	$-y_t$	$-y_b$
	Or	herato	rc						

contributing to mw

Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.05260

Models Fitting the Mass of the W Boson

68 and 95% CL ranges of masses assuming unit couplings, mass range proportional to coupling

Searching for Models Fitting the Mass of the W Boson

- W: Isotriplet vector boson, mass ~ 3 TeV x coupling, electroweak production, accessible at LHC?
- B: Singlet vector boson, mass ~ 8 TeV x coupling, phenomenology depends on fermion couplings, too heavy for LHC?
- E: Isotriplet scalar boson, mass ~ 3 TeV x coupling, detectable in LHC searches for heavy Higgs bosons?
- N: Isosinglet neutral fermion, mass ~ 4 TeV x coupling, similar to (righthanded) singlet neutrino
- E: Isosinglet charged fermion, mass ~ 6 TeV x coupling, similar to (righthanded) singlet electron

LHC Search for Triplet Vector

HL-LHC Search for Triplet Vector

Quo Vadis mw?

- The jury is still out concerning the experimental measurement
 - Tension with SM, previous measurements

"Extraordinary claims require extraordinary evidence"

- Nevertheless, much theoretical speculation (> 90 papers!)
- 4 SMEFT operators can increase mw
- 3 SMEFT operators generated by single field extensions of the SM at tree level
 - Vector bosons W or B, scalar boson Ξ , fermions N, E
- Prospects for the LHC?

LHC-TeV M_w Working Group

Compatibility and combination of world W-boson mass measurements

LHC x TeVatron Both compatible with LEP LHC values consistent Tension among Tevatron values Strong tension between LHC & Tevatron

Beyond Dimension-6: Dimension-8 Operators

• Most analyses focus on dimension-6:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i=1}^{2499} \frac{C_i}{\Lambda^2} \mathcal{O}_i$$

• Dimension-8 contributions scaled by quartic power of new physics scale:

$$\Delta \mathcal{L}(ext{dim-8}) = \sum_{j} rac{ ilde{c}_{j}}{ ilde{\Lambda}^{4}} \mathcal{O}_{j} = \sum_{j} rac{ ext{sign}(ilde{c}_{j})}{ extsf{\Lambda}^{4}_{j}} \mathcal{O}_{j}$$

- Study corrections to dimension-6 analysis
- Or study processes without dimension-6 contributions,

e.g., light-by-light scattering, $gg \rightarrow \gamma\gamma, Z\gamma$, ...

Neutral triple-gauge couplings (nTGCs): $\gamma \gamma^* Z$, $\gamma ZZ *$

SMEFiT Analysis

- Includes linear dimension-8 as well as quadratic dimension-6
- No significant evidence for nonzero operator coefficients
- Experiments, please enter the game!

Quo Vadis SMEFT?

- Powerful framework for global analyses of LHC and other data
- Systematic way to search for BSM physics
- Can be used in principle to identify "interesting" BSM scenarios
- Dimension-6 operators are a first approximation
- Important to check lesser importance of dimension-8, convergence towards ultraviolet-complete model
- Interesting direct windows on dimension-8 operators

Future SMEFT Prospects

de Blas et al (Snowmass), arXiv:2206:08326