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Topics

hLecture 1
hFrequentist Analysis (1)

hLecture 2
hFrequentist Analysis (2) 
hBayesian Analysis

hLectures 3
hIntroduction to Machine Learning

hFoundations
hModels
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Jupyter Notebooks

I encourage you to try out the jupyter notebooks at
 https://github.com/hbprosper/AEPSHEP
Also: https://github.com/hbprosper/GSW

Recommendation (for Windows, Linux and OSX)
1. Install miniconda. See instructions at: 

https://docs.conda.io/en/latest/miniconda.html
2. Create a miniconda environment
 conda create --name aepshep

3. Activate environment
 conda activate aepshep
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FOUNDATIONS

“George rethinks his life after failing
  the Turing Test”

÷i÷÷÷÷÷÷÷÷.



What is Machine Learning?

The art and science of creating statistical models 
 𝑓 𝑥,𝜔 ∈ 𝐹 of data by minimizing a 

quantity called the average loss, 
or empirical risk, 

𝑅 𝜔 =
1
𝑁
+
!"#

$

𝐿 𝑡!, 𝑓!

	 where

 T = {(ti , xi)} are training data (targets, inputs),
	 𝑓!   is the model 𝑓 𝑥,𝜔  evaluated at 𝑥!, and
 𝐿 𝑡!, 𝑓! ,  is the loss function, a measure of the loss 

  incurred by choosing a function from F.
 

 F = Function class
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The average loss, 𝑅 𝜔 , defines a “landscape” in the 
parameter space of the model 𝑓 𝑥,𝜔 ∈ 𝐹. 

      The Goal:  find the 
     lowest point in the 
     landscape defined by an 

    infinite amount of data 
    by navigating the 

     landscape defined by a 
    finite amount of data.

  

Minimizing the Average Loss
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This is typically done by moving in the direction of steepest 
descent using Stochastic Gradient Descent. 

At every step:  
1. Compute the local gradient of  𝑅 𝜔 = #

%
∑!"#% 𝐿 𝑡!, 𝑓!  

using a batch of training data with 𝒏 ≪ 𝑵.

2. Move to the next position in the landscape using 

𝜔&'# = 𝜔& − 𝜂∇𝑅

  

Minimizing the Average Loss
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Why does this algorithm 

𝜔&'# = 𝜔& − 𝜂∇𝑅
work? 

Here’s why:
𝑅 𝜔&'# = 𝑅 𝜔& − 𝜂∇𝑅 

               = 𝑅 𝜔& −  𝜂∇𝑅 : ∇𝑅 + 𝑂(𝜂()
	

If the 𝑂(𝜂() can be neglected, and since the 
  𝑂(𝜂) term is always negative, then

  𝑅 𝜔&'# < 𝑅 𝜔& .

  

Minimizing the Average Loss
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Minimizing the Average Loss

Since the goal, ideally, is to find the lowest point of the 
“landscape” for an infinite amount of training data, it’s 
instructive to consider the limit 𝑁 → ∞. 

In that limit, the average loss 𝑅 𝜔  becomes the functional

𝑅	[𝑓] = D𝑑𝑥D𝑑𝑡	𝐿 𝑡, 𝑓 	𝑝(𝑡, 𝑥)

which, given that 𝑝 𝑡, 𝑥 = 𝑝 𝑡|𝑥 	𝑝(𝑥), can be written as

𝑅 𝑓 = D𝑑𝑥	𝑝 𝑥 D𝑑𝑡	𝐿 𝑡, 𝑓 	𝑝(𝑡|𝑥)
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Minimizing the Average Loss

The calculus of variations shows that if 𝑝 𝑥 > 0 for all 
values of 𝑥 then the location of the minimum of 𝑅	[𝑓], and 
hence the optimal function 𝑓(𝑥, 𝜔∗), is found by solving 
the equation

	
𝛿𝑅
𝛿𝑓

= D
𝜕𝐿
𝜕𝑓
	𝑝 𝑡 𝑥 	𝑑𝑡 = 0

The goal of a machine learning training algorithm is to find 
good approximations to solutions of the above equation 
using a (necessarily) finite training sample.
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Common Loss Functions

Quadratic loss: 𝐿 𝑡, 𝑓 = 𝑡 − 𝑓 ( 

D
𝜕𝐿
𝜕𝑓
	𝑝 𝑡 𝑥 	𝑑𝑡 = 0

Solution

Very Important Point (VIP): The solution is independent of 
the details of the model 𝑓. The solution depends solely on 
the form of the loss function and the probability 
distribution, 𝑝(𝑡, 𝑥), associated with the training data.
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𝑓(𝑥, 𝜔∗) = D 𝑡	𝑝 𝑡	 𝑥)	𝑑𝑡



Common Loss Functions

Binary cross entropy loss: 
𝐿 𝑦, 𝑓 = −[𝑡 log 𝑓 + 1 − 𝑡 log(1 − 𝑓)]

D
𝜕𝐿
𝜕𝑓
	𝑝 𝑡 𝑥 	𝑑𝑡 = 0

Solution

where 𝑡 ∈ [0, 1] and 𝜖 = * +"#
*(+"-) is the ratio of training sample 

sizes for the two classes of objects labeled by 𝑡 ∈ [0, 1].
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𝑓(𝑥, 𝜔∗) = 𝑝 𝑡 = 1	 𝑥) =
𝑝(𝑥 𝑡 = 1 𝜖

𝑝(𝑥 𝑡 = 1 𝜖 + 𝑝(𝑥 𝑡 = 0



Common Loss Functions

Exponential loss: 
𝐿 𝑦, 𝑓 = exp(−𝑤𝑡𝑓/2)	

D
𝜕𝐿
𝜕𝑓
	𝑝 𝑡 𝑥 	𝑑𝑡 = 0

Solution

where 𝑡 ∈ [−1, 1] and 𝜖 = * +"#
*(+"/#) is the ratio of training 

sample sizes for the two classes labeled by 𝑡 ∈ [−1, 1].
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𝑓(𝑥, 𝜔∗) =
1
𝑤
log

𝑝(𝑥 𝑡 = 1
𝑝(𝑥 𝑡 = −1

𝜖



MODELS: 
BOOSTED DECISION TREES
(BDT)



𝒑𝒑 → 𝑯 → 𝒁𝒁 → 𝟒𝒍

Process      𝝈	 ×	𝑩𝑹	(𝐟𝐛)

(a) Gluon gluon fusion (ggF)
(b) Vector boson fusion (VBF)
(c) Associated production (VH)
(d) Top anti-top fusion (ttH)

15http://www.scholarpedia.org/article/The_Higgs_Boson_discovery



𝒑𝒑 → 𝑯 → 𝒁𝒁 → 𝟒𝒍

We shall use decision trees 
with the variables

∆𝜂 𝑗𝑗, 𝑚&&

to try to separate
𝑉𝑉 → 𝐻 

from
𝑔𝑔 → 𝐻.

ATLAS Open Data



Decision Trees

A decision tree (DT) is a set of if then else statements that 
form a tree-like structure.

Algorithm: recursively partition the space into regions of 
diminishing impurity.

A common measure of impurity is the 
Gini Index: 

 p (1 – p), where p is the purity
 p = S / (S + B)
p = 0 or 1: maximum purity
p = 0.5:     maximum impurity

17

(Corrado Gini, 1884-1965) 



Decision Trees
1. For each variable,  
  find the partition 
  (“cut”) that gives 
  the greatest decrease in 
  impurity.

2. Choose the best 
partition among all
partitions and split the 
data along that partition 
into two subsets.

3. Repeat 1. and 2. for each 
subset of data.
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Decision Trees (DT)

   Unfortunately, decision trees are unstable!
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The most popular decision tree averaging methods are:

hBagging:  each tree is trained on a bootstrap* 
   sample drawn from the training set

hRandom Forest: bagging with randomized trees

hBoosting:  each tree trained on a different 
   reweighting of the training set

*A bootstrap sample is a sample of size N drawn, with replacement, from 
another of  the same size. Duplicates can occur and are allowed.

DT Averaging Methods



First 6 Decision Trees
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0.54 0.26 0.21

0.22 0.12 0.15



Boosted Decision Trees (BDT)

The contours are obtained from 

𝑝 𝑡 = 1 𝑥 ≈
𝐻012

𝐻012 +𝐻334

where 𝐻012	and 𝐻334
are histograms in the
𝑥 = Δ𝜂&& , 𝑚&& space.

A BDT minimizes

𝑅[𝑓] = 𝐸 exp −
𝑤𝑡𝑓
2

with 𝑤 = 2, which yields 𝑝 𝑡 = 1 𝑥 = 1/(1 + exp(−2𝑓))
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MODELS: CNN, GNN, GD



Convolutional Neural Networks (CNN)

A few milestones in the development of convolutional neural 
networks

h1980 Kunihiko Fukushima invents the neocognitron that is 
able to perform character recognition. 

h1998 Yan LeCun developed LeNet, which is able to 
recognize handwritten zip code digits. 

h2012 Alex Krizhevsky introduced AlexNet, which 
produced state of the art results on the image database 
ImageNet (https://image-net.org/).
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https://image-net.org/


Convolutional Neural Networks

What are CNNs?

CNNs are ML models that create a representation of data that 
are naturally structured into 1D, 2D, or 3D arrays. The objects 
represented by these data are then classified using a fully 
connected NN. 
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A CNN comprises three types of processing layers: 
1. convolution, 2. pooling, and 3. classification.
1. Convolution layers

The input layer is “convolved” with one or more matrices 
using element-wise products that
are then summed. In this example, 
since the sliding matrix fits 9 times, 
we compress the input from
a 5 x 5 to a to a 3 x 3 matrix.
 

Convolutional Neural Networks
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2. Pooling Layers
After convolution, and a pixel-by-pixel non-linear map  
(using, e.g., the function y = ReLU(x)), a coarse-graining 
of the layer is performed called max pooling in which the 
maximum values within a series of small 
windows are selected and become the 
output of a pooling layer.

Convolutional Neural Networks
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3. Classification Layers
After an alternating sequence of convolution and pooling 
layers, the outputs go to a standard neural network, either 
shallow or deep. The final outputs correspond to the 
different classes, which approximate the probabilities:

𝑝 𝐶5 𝑥 = 𝑝 𝑥 𝐶5 𝑝(𝐶5)/ +
6"#

7

𝑝 𝑥 𝐶6 𝑝(𝐶6)

Convolutional Neural Networks
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Example 1: Quark/Gluon Jets

Consider the task of 
classifying single-channel 
images of quark- and gluon-
initiated jets1.

A batch of input data is of 
shape (𝑁, 𝐶	𝐻,𝑊), where 𝑁 
is the batch size, 𝐶, the 
number of channels/image, 
and 𝐻×𝑊is the size in pixels 
of each channel of an image.
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1. https://www.kaggle.com/datasets/anonymous2506/quarkgluon. 

https://www.kaggle.com/datasets/anonymous2506/quarkgluon1


Example 1: Quark/Gluon Jets

Here is a high-level view of a simple CNN model:

𝑓(𝑥) = softmax dropout(linear(platten 𝒈(c 𝒉 c 𝑥 )))

And here is a code-level view:
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Example 1: Quark/Gluon Jets

𝑓(𝑥)
= softmax dropout(linear(platten 𝒈(c 𝒉 c 𝑥 )))

Accuracy on a
balanced dataset:
69%.
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MODELS: CNN, GNN, GD



Example 3: 𝝂 Classification

Graph neural networks (GNN) are extremely popular in 
particle physics. We consider a recent example from 
IceCube*. 
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*N. Choma et al. IceCube collaboration, Graph Neural Networks for IceCube Signal Classification, arXiv:1809.06166v1 



Example 3: 𝝂 Classification

IceCube models the signals from 𝑛 Digital Optical Modules 
(DOMs) as the vertices of a graph. Each vertex is associated 
with a 𝑑-dimensional (row-wise) vector of attributes 𝑣! =
𝑥#, ⋯ , 𝑥8 !, three of which are the spatial coordinates 
𝑥, 𝑦, 𝑧 	of the DOM. 

An 𝑛×𝑛 adjacency matrix, 
𝑨 𝜎 !& = softmax(𝑑!&), with 
𝑑!& = exp − 𝑥! − 𝑥&

(/2𝜎(  

models the edges. 
The vectors 𝑣! are concatenated vertically  into an 𝑛×𝑑 
matrix: 𝑿 = 𝑣#; ⋯ ; 𝑣% .
(Horizontal concatenation is denoted by 𝑿 = 𝑣#, ⋯ , 𝑣% .)
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Example 3: 𝝂 Classification

hThe 𝑛×𝑑 matrix, 𝑿, passes through a sequence of identical 
graph processors 𝑿. 

hAt the end, 𝑿	is mapped to a 𝑑-dimensional vector 𝒙 using 
a map that is permutation invariant with respect to the 
vertices and invariant with respect to the number of 
vertices. 

hFinally, the vector 𝒙	is  mapped to the scalar output 0 ≤
𝑦 ≤ 1 using a sigmoid.
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Example 3: 𝝂 Classification

Each graph processor is parameterized by a 2𝑑×𝑑/2 matrix, 
𝑤, and a scaler b and computes:

𝒀 = 𝑨𝑿,𝑿 𝑤 + 𝑏𝑢, 	 𝑿 ← ReLU 𝒀 , 𝒀

The ReLU is applied element-wise and 𝑢 is an 𝑛×𝑑/2 matrix 
of ones.
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Example 3: 𝝂 Classification

The GNN is 6.3 times
more efficient than the 
IceCube physics baseline 
analysis at a signal to 
noise ratio that is 3 
times better. 

It also outperforms a 
3D CNN.
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MODELS: CNN, GNN, GD



Example 4: 𝐃𝐢𝐟𝐟𝐮𝐬𝐢𝐨𝐧

Generative models are mathematical functions that generate 
data according to a well-defined plan. 

A typical application is generating samples from a complex 
multi-dimensional distribution from a simpler, known, 
distribution such as a diagonal multi-dimensional Gaussian. 

See, for example,
Yanfang Lui, Minglei Yang, Zezhong Zhang, Feng Bao, Yanzhao Cao, and 
Guannan Zhang, *Diffusion-Model-Assisted Supervised Learning of Generative 
Models for Density Estimation*, arXiv:2310.14458v1, 22 Oct 2023
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Example 4: 𝐃𝐢𝐟𝐟𝐮𝐬𝐢𝐨𝐧

Here is an example of a
model that samples from a
diagonal bi-variate
Gaussian and 
deterministically maps
each generated point to a
point on a spiral.
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Summary (1)

For a reasonably comprehensive archive of machine learning 
development and applications, I recommend this website:

https://iml-wg.github.io/HEPML-LivingReview/
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https://iml-wg.github.io/HEPML-LivingReview/


Summary (2)

hMachine learning (ML) models are statistical models 
trained, that is, fitted, to data by minimizing a given 
average loss.

hThe mathematical quantity approximated by an ML model 
depends solely on the form of the loss function and the 
probability distribution of the training data. In particular, 
it does not depend on the details of the model!

hThe quality of the approximation, however, does depend 
on the model, as well as the amount of data used, and the 
quality of the training.
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