STATISTICS AND MACHINE LEARNING
3

Harrison B. Prosper
Florida State University

aB @8 HB F} = 12-25 JUNE 2024
| L) eal Bl) e Nakho Rgihom, Thailand. . . .

» P

Topics

® Lectures 3
® Introduction to Machine Learning
® Foundations
® Models

Jupyter Notebooks

I encourage you to try out the jupyter notebooks at
https://github.com/hbprosper/AEPSHEP
Also: https://github.com/hbprosper/GSW

Recommendation (for Windows, Linux and OSX)

1. Install miniconda. See instructions at:
https://docs.conda.io/en/latest/miniconda.html

2. Create a miniconda environment
conda create --name aepshep

3. Activate environment
conda activate aepshep

https://github.com/hbprosper/AEPSHEP
https://github.com/hbprosper/AEPSHEP
https://github.com/hbprosper/AEPSHEP
https://github.com/hbprosper/GSW
https://docs.conda.io/en/latest/miniconda.html

FOUNDATIONS

“George rethinks his life after failing
the Turing Test”

What is Machine Learning?

The art and science of creating statistical models

f(x,w) € F of data by minimizing a
quantity called the average loss,
or empirical risk,

N
1
R(@) == > L(tif)
=1

F = Function class

where

T'={(t,x)} are training data (targets, inputs),

fi is the model f (x, w) evaluated at x;, and
L(t;, fi), is the loss function, a measure of the loss

incurred by choosing a function from F.

Minimizing the Average Loss

The average loss, R(w), defines a “landscape” in the
parameter space of the model f(x,w) € F.

The Goal: find the
- lowest point in the
| landscape defined by an
infinite amount of data
by navigating the
landscape defined by a
finite amount of data.

Minimizing the Average Loss

This 1s typically done by moving in the direction of steepest
descent using Stochastic Gradient Descent.

At every step:

1. Compute the local gradient of R(w) = % L, fi)
using a batch of training data with n < N.

2. Move to the next position 1n the landscape using

Wjt1 = Wj —NVR

Minimizing the Average Loss

Why does this algorithm

Wjt1 = Wj —NVR
work?

Here’s why:
R(wj4+1) = R(w; —1VR)
= R(w;) — nVR - VR + 0(n?

If the O(n?) can be neglected, and since th
O (n) term 1s always negative, then

R(a)j+1) < R(a)j).

Minimizing the Average Loss

Since the goal, 1deally, 1s to find the lowest point of the
“landscape” for an infinite amount of training data, 1t’s
instructive to consider the limit N — oo,

In that limit, the average loss R(w) becomes the functional
RIA = [dx [e ppeeo

which, given that p(t,x) = p(t|x) p(x), can be written as

R[f] = jdx p(x) U dt L(t,f)p(tlx)]

Minimizing the Average Loss

The calculus of variations shows that if p(x) > 0 for all
values of x then the location of the minimum of R [f], and
hence the optimal function f (x, w™), is found by solving
the equation

SR (0L
sf) of

The goal of a machine learning training algorithm is to find
good approximations to solutions of the above equation
using a (necessarily) finite training sample.

p(tlx)dt =0

10

Common Loss Functions

Quadratic loss: L(¢t, f) = (t — f)?

oL (tlx)dt =0
gf PRI At =

Solution

flx,w™) =jtp(t|x) dt

Very Important Point (VIP): The solution 1s independent of
the details of the model f. The solution depends solely on
the form of the loss function and the probability
distribution, p(t, x), associated with the training data.

11

Common Loss Functions

Binary cross entropy loss:

L(y,f) = —[tlogf + (1 —t)log(1l— f)]

oL
ﬁ p(t|x)dt =0

Solution

p(x|t = 1)e

f,w) =plt=1]x)=

p(x|t = 1)e + p(x|t = 0)

m(t=1)
(t=0)
sizes for the two classes of objects labeled by t € [0, 1].

where t € [0,1] and € = is the ratio of training sample

12

Common Loss Functions

Exponential loss:

L(y,f) = exp(—wtf /2)

oL (tlx)dt =0
gf PRI At =
Solution
1 p(x|t =1)
* =_1
[o) w Og(p(xlt =—-1) E)
n(t=1) .

wheret € [—1,1] and € = is the ratio of training

(t=-1)

sample sizes for the two classes labeled by t € [—1, 1].

13

MODELS:
BOOSTED DECISION TREES
(BDT)

pp - H—- Z7Z - 4l

Process o X BR (fb)

(a) Gluon gluon fusion (ggF)
(b) Vector boson fusion (VBF)
(c) Associated production (VH)
(d) Top anti-top fusion (ttH)

http://www.scholarpedia.org/article/The Higgs Boson discovery 15

pp - H—- Z7Z - 4l

We shall use decision trees 1000

with the variables

300 -

<)

to try to separate = 400-
VvV - H

200 1
from 01
gg — H.

ATLAS Open Data

Decision Trees

A decision tree (DT) is a set of if then else statements that
form a tree-like structure.

Algorithm: recursively partition the space into regions of
diminishing impurity.

A common measure of impurity is the
Gini Index:

p (1 —p), where p 1s the purity
p=S/(S+8B)
p =0 or 1: maximum purity (Corrado Gini, 1884-1965)

p=0.5: maximum impurity

17

1.

Decision Trees

if massjj < 214.20:
if massjj < 95.49:

For each variable, BKG = 0.2760. 0.1620

find the partition 1000 else:

. BKG = 0.1490, 0.1310
(“‘cut”) that gives VBF cise:
the greatest decrease in 300 gof if detajj < 2.33:
)) SIG = 0.0266, 0.0293
mpurity. y else:

.0482, 0.1780

Choose the best 5
partition among all s
partitions and split the & 4007
data along that partition
into fwo subsets. 500 &

Repeat 1. and 2. for each
subset of data.

Ut

18

Decision Trees (DT)

Unfortunately, decision trees are unstable!

19

DT Averaging Methods

The most popular decision tree averaging methods are:

® Bagging: each tree 1s trained on a bootstrap™
sample drawn from the training set

®* Random Forest: bagging with randomized trees

® Boosting: cach tree trained on a different
reweighting of the training set

* A bootstrap sample is a sample of size N drawn, with replacement, from
another of the same size. Duplicates can occur and are allowed.

20

m;j (GeV)

First 6 Decision Trees

1000 1000 1000
800 1 750 - 750
600 -
0.54 500 - 0.26 500 - 0.21
400
000 4 9250 250
0 0 - 0
0.0 25 5.0 0.0 25 5.0 0.0 25 5.0
1000 1000 1000
800 1 750 750
600 - 22 . .
0 ez |1 015
400
200 250 1 250
) I S) I)
01 2 3 4 5 01 2 3 4 5 01 2 3 4 5
| Anjj | Anjj| | Anjj|

21

Boosted Decision Trees (BDT)

The contours are obtained from
Hygr 1000

p(t=1[x) =
Hvgr + Hggr 800

0.8

where Hygr and Hy ¢

are histograms in the

X = |A77jj|,mjj space.

A BDT minimizes

_ wtf o 1 2 3 4
RIf]=E ’exp (_ 2)] | Anjj
with w = 2, which yields p(t = 1|x) = 1/(1 + exp(—2f))

(x4

22

MODELS: CNN, GNN, GD

Convolutional Neural Networks (CNN)

A few milestones in the development of convolutional neural

networks

® 1980 Kunihiko Fukushima invents the neocognitron that 1s
able to perform character recognition.

® 1998 Yan LeCun developed LeNet, which 1s able to
recognize handwritten zip code digits.

® 2012 Alex Krizhevsky itroduced AlexNet, which
produced state of the art results on the 1image database

ImageNet (https://image-net.org/).

24

https://image-net.org/

Convolutional Neural Networks

What are CNNs?

CNNs are ML models that create a representation of data that
are naturally structured into 1D, 2D, or 3D arrays. The objects
represented by these data are then classified using a fully
connected NN.

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

cat (0.04)
boat (0.94)
bird (0.02)

’l

25

Convolutional Neural Networks

A CNN comprises three types of processing layers:

1. convolution, 2. pooling, and 3. classification.

1. Convolution layers
The input layer 1s “convolved” with one or more matrices
using element-wise products that

1/1]1]ofo
are then summed. In this example, oli/1]1]o] [a
. oOl0l1111]1
since the sliding matrix fits 9 times, StelaTilo
we compress the input from of1]1]o]o
Convolved

adSx5toatoa 3 X 3 matriX. Image Feature

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

bl ~—w._ dog(0.01)
cat (0.04)
%E% boat (0.94)
bird (0.02)
] T -~

26

Convolutional Neural Networks

Pooling Layers
After convolution, and a pixel-by-pixel non-linear map
(using, e.g., the function y = ReLU(x)), a coarse-graining
of the layer 1s performed called max pooling in which the
maximum values within a series of small
windows are selected and become the
output of a pooling layer.

Max(1,1,5,6)=6

max pool with 2x2 filters
and stride 2 6 | 8

B
&/
2
2

W = NN
A O| 0

Convolution Pooling Convolution Pooling Fully
Connect:

y

Rectified Feature Map
i T -—— UUE |ULULf
cat (0.04)
i 0 boat (0.94)
a~ i bird (0.02)

-

i

27

Convolutional Neural Networks

3. Classification Layers
After an alternating sequence of convolution and pooling
layers, the outputs go to a standard neural network, either
shallow or deep. The final outputs correspond to the
different classes, which approximate the probabilities:

M
p(Cel¥) = P(xICOP(C)/) PEICIP(Cr)
m=1

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

bl ~—w._ dog(0.01)
%ﬁt (0.04)
boat (0.94)
L - bird (0.02)
o | o -

28

Example 1: Ouark/Gluon Jets

Consider the task of
classifying single-channel
images of quark- and gluon-
initiated jets!.

A batch of input data 1s of
shape (N, C H, W), where N
1s the batch size, C, the
number of channels/image,
and H XW1s the size 1n pixels
of each channel of an i1mage.

1. https://www.kaggle.com/datasets/anonymous2506/quarkgluon.

29

https://www.kaggle.com/datasets/anonymous2506/quarkgluon1

Example 1: Quark/Gluon Jets

Here 1s a high-level view of a simple CNN model:

f(x) = softmax (dropout(lineal‘(ﬂatten (9 (e (h(e(x))))))))

And here 1s a code-level view:

Sequential(
(0): Conv2d(1, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): MaxPool2d(kernel_size=(2, 2), stride=2, padding=0, dilation=1, ceil_mode=False)
(2): ReLU()
(3): Conv2d(4, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): MaxPool2d(kernel_size=(2, 2), stride=2, padding=0, dilation=1, ceil_mode=False)
(5): ReLU()
(6): Flatten(start_dim=1, end_dim=-1)
(7): Linear(in_features=64, out_features=2, bias=True)
(8): Dropout(p=0.2, inplace=False)
(9): Softmax(dim=1)
)

number of parameters: 318

30

Example 1: Quark/Gluon Jets

f(x)
= softmax (dropout(linear(ﬂatten (g(c (h(c(x))))))))

Training and Validation Accuracy

0.80
Accuracy on a
balanced dataset; 075
699%. S 0.70 -
©
5 0.65
o
<
0.60
055 —— Training

—— Validation

0 1000 2000 3000 4000 5000 6000
lterations

31

MODELS: CNN, GNN, GD

Example 3: v Classification

Graph neural networks (GNN) are extremely popular in
particle physics. We consider a recent example from

IceCube*.

1450 m

2450 m
2820 m

Fig. 1.

T 600
x_s = IceTop "
i it o gy __—" 81 stations / 162 tanks a0 -
__________________ 324 optical sensors °
- o ©
200 - ® ®
° @
IceCube In-Ice Array o
86 strings including DeepCore
5160 optical sensors -200
-400
-600
600 -400 200 0

DeepCore

8 strings optimized for lower energies +
7 standard central strings

480 + 420 optical sensors

Eiffel Tower
324 m

optical sensor

The IceCube Neutrino Observatory with the in-ice array, its sub-

*N. Choma et al. IceCube collaboration, Graph Neural Networks for IceCube Signal Classification, arXiv:1809.06166v1

33

Example 3: v Classification

IceCube models the signals from n Digital Optical Modules
(DOMs) as the vertices of a graph. Each vertex 1s associated
with a d-dimensional (row-wise) vector of attributes v; =
(xq1,:+,xq);, three of which are the spatial coordinates

(x,y,z) of the DOM. @ @
An nXn adjacency matrix, /

A(0);; = softmax(d,), with ’@
dij = exp (—”xi — xj||2/202) @

models the edges.

The vectors v; are concatenated vertically into an nXxd
matrix: X = [vq; - ; vyl
(Horizontal concatenation is denoted by X = [vq, -+, v,].)

34

Example 3: v Classification

® The nxd matrix, X, passes through a sequence of identical
graph processors X.

® At the end, X 1s mapped to a d-dimensional vector x using
a map that 1s permutation invariant with respect to the
vertices and invariant with respect to the number of
vertices.

® Finally, the vector x 1s mapped to the scalar output 0 <
y < 1 using a sigmoid.

—a-a-a

n
X = Z Xjx [—>|y = sigmoid(xa” + b)
j=1

35

Example 3: v Classification

Each graph processor 1s parameterized by a 2d Xd /2 matrix,
w, and a scaler b and computes:

Y = [AX, X]w + bu, X « [ReLU(Y),Y]

The ReLU 1s applied element-wise and u 1s an nXd /2 matrix
of ones.

—g-a-m

n
X = Z Xjk [y = sigmoid(xa” + b)
j=1

36

Example 3: v Classification

1.0

The GNN 1s 6.3 times T x ow

m GNN
Baseline

more efficient than the

0.8 -

IceCube physics baseline

0.6

analysis at a signal to

0.4 A

noise ratio that is 3

times better.

0.2 1

True Positive Rate (Signal Efficiency)

It also outperforms a T T T T T
3D CNN.

False Positive Rate (1- BG rejection)

Fig. 3. Receiver operating characteristic curve for various methods considered
in this paper. The green square and blue X indicate the evaluation point for
the GNN and CNN, respectively.

37

MODELS: CNN, GNN, GD

Example 4: Diffusion

Generative models are mathematical functions that generate
data according to a well-defined plan.

A typical application 1s generating samples from a complex
multi-dimensional distribution from a simpler, known,
distribution such as a diagonal multi-dimensional Gaussian.

See, for example,

Yanfang Lui, Mingle1 Yang, Zezhong Zhang, Feng Bao, Yanzhao Cao, and
Guannan Zhang, *Diffusion-Model-Assisted Supervised Learning of Generative
Models for Density Estimation™®, arXiv:2310.14458v1, 22 Oct 2023

39

Example 4: Diffusion

Here 1s an example of a

Reverse Time Diffusion

model that samples from a
diagonal bi-variate

S
1

Gaussian and
deterministically maps
each generated point to a

point on a spiral.

40

Summary (1)

For a reasonably comprehensive archive of machine learning
development and applications, I recommend this website:

https://iml-wg.github.io/HEPML-LivingReview/

HEPML-LivingReview

A Living Review of Machine Learning for Particle Physics

Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy
physics. The goal of this document is to provide a nearly comprehensive list of citations for those developing and applying these
approaches to experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as
possible to incorporate the latest developments. A list of proper (unchanging) reviews can be found within. Papers are grouped
into a small set of topics to be as useful as possible. Suggestions are most welcome.

41

https://iml-wg.github.io/HEPML-LivingReview/

Summary (2)

® Machine learning (ML) models are statistical models
trained, that 1s, fitted, to data by minimizing a given
average loss.

® The mathematical quantity approximated by an ML model
depends solely on the form of the loss function and the
probability distribution of the training data. In particular,
it does not depend on the details of the model!

® The quality of the approximation, however, does depend
on the model, as well as the amount of data used, and the
quality of the training.

42

