

Measurements of Higgs boson production by gluon-gluon fusion and vector-boson fusion using $H \rightarrow WW^* \rightarrow e\nu\mu\nu$ decays in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector Phys. Rev. D 108 (2023) 032005

Badr-eddine Ngair (obo the group B)

ASIA EUROPE PACIFIC SCHOOL OF HIGH-ENERGY PHYSICS-2024

23-June-2024

Badr-eddine Ngair

Higgs measurement

2 Measurements of Higgs boson production

Badr-eddine Ngair

Higgs measurement

Measurements of Higgs boson production

Results

Back-Up 000000

Motivation

Measurements of the Higgs **properties** are a powerful test of the **SM** and can be used to constrain theories of physics beyond the SM (**BSM**).

- * ロ * * 個 * * 画 * * 画 * うへぐ

Badr-eddine Ngair

Higgs measurement

Results

Introduction

- Measurement of Higgs boson production by gluon-gluon fusion (ggF) and vector-boson fusion (VBF)
- 2 The decay ${\sf H} o {\sf W} {\it W}^* o e
 u \mu
 u$
 - Large branching ratio
 - Low-level backgrounds: different flavor of charged leptons in final state
- **3** Previous measurements
 - ATLAS [PLB 789 (2019) 508], $\sqrt{s} = 13$ TeV, $\mathcal{L} = 36$ fb⁻¹
 - CMS [JHEP 03 (2021) 003] $\sqrt{s} = 13$ TeV, $\mathcal{L} = 137$ fb⁻¹
- 4 Additions for full **Run 2** Analysis (relative to the 36 fb^{-1} Analysis)
 - Include of ggF **Njets** \geq 2 region
 - VBF signal tagging with a **ML** technique (DNN).
 - Simplified Template Cross Section (STXS) stage 1.2

Measurements of Higgs boson production

Results 00000000

ATLAS Detector

- 1 Data taken from pp collision at $\sqrt{s}=13$ TeV, using the full Run2 dataset with ${\cal L}=139~{\it fb}^{-1}$
- 2 MC simulation for signal and backgrounds generated via standard generators like POWHEG, Pythia, MadGraph and Sherpa

Badr-eddine Ngair

2 Measurements of Higgs boson production

- * ロ * * @ * * 目 * * 目 * * の < ?

Badr-eddine Ngair

Higgs measurement

Event Reconstuction

- 1 Tracks $p_T > 500$ MeV
- **2** \geq one primary vertex with \geq two associated tracks
- 3 Electrons
 - Excluding the transition region between the barrel and end caps of the LAr calorimeter
- 4 Muons
 - Inner tracker and muon spectrometer
- **5** Trigger objects must be matched to at least one of offline reconstructed leptons

AEPSHEP-2024

Results 00000000

Event Selection

- Two isolated leptons with opposite charge and different flavour $\alpha = (e, \mu)$
- $p_T(I_1) > 22 \text{ GeV}$
- $p_T(I_2) > 15 \text{ GeV}$
- $\tau \tau$ Background reduction
 - $m_{\rm H}>10~{\rm GeV}$
 - $p_T^{\text{miss}} > 20 \text{ GeV} \text{ (only ggF)}$

Results

Event Categorization

$N_j = 0$

- Sensitive to ggF
- discriminant for bkg: $\Delta \phi_{\ell\ell} < 0.8$ and $\Delta m_{\ell\ell} < 55$ GeV

$N_j = 1$

- Sensitive to ggF
- discriminant for the bkg: max $(m_T^{\ell_i}) > 50$ GeV

$$m_T^{\ell_i} = \sqrt{2p_T^{\ell_i} E_T^{miss}(1 - \cos\Delta\phi(\ell_i, E_T^{miss}))}$$

$N_j \ge 2$

- Sensitive to ggF and VBF
- For ggF : $|m_{jj}{-}85| < 15$ GeV, $\Delta y_{jj} < 1.2$, $\Delta \phi_{\ell\ell} < 0.8$ and $\Delta m_{\ell\ell} < 55$ GeV
- For VBF: Deep Neural Network (DNN) trained on 15 variables
- \rightarrow Dominant bkg includes WW, $t\bar{t}/{\rm W}t$, Z/γ^{*} in above categories

AEPSHEP-2024

Results

STXS (Stage 1.2)

Simplified template cross sections (STXS) are an approach to categorise the Higgs-boson candidate events according to the properties associated with the Higgs production mode. This allows physicists to characterise the Higgs boson independently of its decay channel.

Badr-eddine Ngair

Introdu 0000		Measurements of Higgs boson production 00000●	Results 0000000		Back-Up 000000
Syst	Systematic uncertainties				
	Source	$\frac{\Delta \sigma_{\rm ggF+VBF} \cdot B_{H \to WW^*}}{\sigma_{\rm ggF+VBF} \cdot B_{H \to WW^*}} $ [%]	$\frac{\Delta \sigma_{\rm ggF} \cdot B_{H \to WW^*}}{\sigma_{\rm ggF} \cdot B_{H \to WW^*}} \ [\%]$	$\frac{\Delta \sigma_{VBF} \cdot B_{H \to WW^*}}{\sigma_{VBF} \cdot B_{H \to WW^*}} \ [\%]$	
	Data stat uncertaint Total sys uncertaint	ies 4.6 es 9.5	5.1 11	15 18	_
	Total	10	12	23	_

ggF signal: measurement of exclusive jet multiplicities **VBF signal**: different generators for the matrix-element matching **Background**: theoretical uncertainties in the WW and top-quark

Badr-eddine Ngair	
Higgs measurement	

AEPSHEP-2024

A D > A D > A D > A D

2 Measurements of Higgs boson production

- * ロ * * @ * * 目 * * 目 * * の < ?

Badr-eddine Ngair

Higgs measurement

Results

Post-fit m_T and DNN distributions

Badr-eddine Ngair

Higgs measurement

AEPSHEP-2024

13 / 26

Results 000000000

Post-fit SR yields

Process	$N_{\rm jet} = 0 \rm ggF$	$N_{\rm jet} = 1 \rm ggF$	$N_{\rm jet} \ge 2 \ \rm ggF$	$N_{\rm jet} \ge 1$	2 VBF
					DNN:
				Inclusive	[0.87, 1.0]
$H_{ m ggF}$	2100 ± 220	1100 ± 130	440 ± 90	209 ± 40	2.6 ± 0.9
$H_{\rm VBF}$	23 ± 9	103 ± 30	46 ± 12	180 ± 40	$28.8 \hspace{0.2cm} \pm 5.5 \hspace{0.2cm}$
Other Higgs	40 ± 20	55 ± 28	55 ± 27	29 ± 15	0.04 ± 0.02
WW	9700 ± 350	3500 ± 410	1500 ± 470	2100 ± 340	4.6 ± 1.2
$t\bar{t}/Wt$	2200 ± 210	5300 ± 340	6100 ± 500	7600 ± 370	2.6 ± 0.8
Z/γ^*	140 ± 50	280 ± 40	930 ± 70	1300 ± 300	0.6 ± 0.1
Other VV	1400 ± 130	840 ± 100	470 ± 90	380 ± 80	0.6 ± 0.1
Mis-Id	1200 ± 130	720 ± 90	470 ± 50	330 ± 40	1.7 ± 0.2
Total	16770 ± 130	11940 ± 110	10030 ± 100	12200 ± 180	42.0 ± 5.1
Observed	16726	11917	9982	12 189	38

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Badr-eddine Ngair

Higgs measurement

Measurements of Higgs boson production

Results

Inclusive cross-section

$$\begin{split} \sigma_{\mathrm{ggF}}.\mathcal{B}_{H\rightarrow WW^*} &= 12.0 \pm 1.4 \ \mathrm{pb} \\ (\sigma_{\mathrm{ggF}}.\mathcal{B}_{H\rightarrow WW^*})^{SM} &= 10.4 \pm 0.5 \ \mathrm{pb} \end{split}$$

 $\begin{array}{l} \sigma_{\rm VBF}.\mathcal{B}_{H\to WW^*} = 0.75^{+0.19}_{-0.16} \ \rm pb \\ (\sigma_{\rm VBF}.\mathcal{B}_{H\to WW^*})^{SM} = 0.81 \pm 0.02 \ \rm pb \end{array}$

Badr-eddine Ngair

Higgs measurement

Results

STXS results

- The analysis is extended to include measurements of production cross-sections in 11 kinematic fiducial regions (STXS) for the first time in this decay channel.
- Agreement with the SM with a p-value of **53%**

Badr-eddine Ngair

Higgs measurement

Measurements of Higgs boson production

Results 000000000

Back-Up 000000

Event display - ggF $N_j = 0$ (left) and 1 (right)

▲□▶▲□▶▲目▶▲目▶ 目 のQで

AEPSHEP-2024

Badr-eddine Ngair Higgs measurement

Measurements of Higgs boson production

Results 0000000000

Event display - ggF $N_j \ge 2$ (left) and VBF (right)

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQ@

AEPSHEP-2024

Badr-eddine Ngair

- 1 This paper constitutes the first full Run 2 cross section measurements of ggF+VBF H \to WW* in ATLAS
- 2 $H \rightarrow WW^*$ cross section measured in each of the STXS bins, normalized to the corresponding SM prediction are done.
- **3** Looking forward to use run3 data and combine run2+run3.

イロト イボト イヨト

Thank you for your attention!

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで

Badr-eddine Ngair

Higgs measurement

20 / 26

Results 00000000 Back-Up ●00000

Back-Up

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ●

Badr-eddine Ngair

Higgs measurement

21 / 26

Results

Systematic uncertainties (2)

Experimental uncertainties

- Uncertainties arise from the jet energy scale (JES) and resolution (JER), JVT, and the jet ID
- 2 Uncertainties due to the trigger selection
- Our of the soft term in the reconstruction od MET
- combined 2015–2018 integrated luminosity is 1.7%
- **5** Uncertainty in the modeling of pileup
- uncertainty on the electron (muon) ranging from 10% (12%) at low pt to 35% (75%) at high pt.

Theoretical uncertainties

- 1) For signal, top, and ${\rm Z}/\Gamma$
 - parton shower and the matrix-element
- 2 qqWW and of WZ, ZZ and V γ^*
 - variations of the matching scale and nonperturbative effects
- 3 For signal processes
 - variations of the matching scale and nonperturbative effects

factorization and renormalization scales.

- **4** The ggWW process:
 - conservative 50%/+100% normalization uncertainty

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

Introd	

Simulation tools

Process	Matrix element	PDF set	UEPS model	Prediction for total cross section
ggF H	Powheg Box v2 NNLOPS (MC5_2MC@NLO)	PDF4LHC15nnlo	Pythia 8 (Herwig 7)	N3LO $QCD + NLO EW$
VBF H	Powheg Box v2 (MG5_aMC@NLO)	PDF4LHC15nlo	Pythia 8 (Herwig 7)	NNLO $QCD + NLO EW$
VH excluding $gg \rightarrow ZH$	Powheg Box v2	PDF4LHC15nlo	Pythia 8	NNLO QCD + NLO EW
tŦH	Powheg Box v2	NNPDF3.0nlo	Pythia 8	NLO
$gg \rightarrow ZH$	Powheg Box v2	PDF4LHC15nlo	Pythia 8	NNLO QCD $+$ NLO EW
$qq \rightarrow WW$	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	NLO
qq ightarrow WWqq	MG5_aMC@NLO	NNPDF3.0nlo	Pythia 8	LO
			(Herwig 7)	
$gg \rightarrow WW/ZZ$	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	NLO
$WZ/V\gamma^*/ZZ$	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	NLO
$V\gamma$	Sherpa 2.2.8	NNPDF3.0nnlo	Sherpa 2.2.8	NLO
VVV	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	NLO
tī	Powheg Box v2	NNPDF3.0nlo	Pythia 8	NNLO+NNLL
	(MG5_aMC@NLO)		(Ĥerwig 7)	
Wt	Powheg Box v2	NNPDF3.0nlo	Þythia 8	NNLO
	(MG5_aMC@NLO)		(Herwig 7)	
Z/γ^*	Sherpa 2.2.1 (MG5_aMC@NLO)	NNPDF3.0nnlo	Sherpa 2.2.1	NNLO

◆□ > ◆□ > ◆ 臣 > ◆ 臣 > ● 臣 = • の Q () ●

Badr-eddine Ngair	AEPSHEP-2024
Higgs measurement	23 / 26

Systematic uncertainties

Uncertainties from both experimental and theoretical sources affect the results of the analysis

Source	$\frac{\Delta \sigma_{\rm ggf+VBF} \cdot B_{\rm H \rightarrow WW^*}}{\sigma_{\rm ggf+VBF} \cdot B_{\rm H \rightarrow WW^*}} \ [\%]$	$\frac{\Delta \sigma_{\rm ggF} \cdot B_{H \to WW^*}}{\sigma_{\rm ggF} \cdot B_{H \to WW^*}} $ [%]	$\frac{\Delta \sigma_{\text{VBF}} \cdot B_{H \to WW^*}}{\sigma_{\text{VBF}} \cdot B_{H \to WW^*}} [\%]$
Data statistical uncertainties Total systematic uncertainties	4.6 9.5	5.1 11	15 18
$\begin{array}{c} MC \text{ statistical uncertainties} \\ Experimental uncertainties \\ Experimental uncertainties \\ Let energy resolution \\ Let energy resolution \\ Expiss T \\ Moons \\ Electone: \\ Electone: \\ Hup \\ Electone: \\ Pileup \\ Luminosity \\ Theoretical uncertainties \\ gff \\ V \\ WW \\ Top \\ Z + \tau \\ V \\ Other Higs \\ Background normalizations \\ Top \\ Z + \tau \\ Top \\ Top \\ Z + \tau \\ V \\ V \\ V \\ M \\ $	3.0 5.2 0.9 0.0 0.7 1.8 1.3 2.1 2.4 2.1 6.8 3.8 3.5 2.5 2.9 1.8 2.9 1.8 2.9 2.8 0.9 3.6 2.0 9 2.6 2.2 2.9 1.2 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	$\begin{array}{c} 3.8\\ 6.3\\ 2.7\\ 1.1\\ 2.4\\ 2.2\\ 2.1\\ 1.6\\ 4.4\\ 2.5\\ 2.0\\ 7.8\\ 4.3\\ 7.8\\ 4.3\\ 2.9\\ 0.4\\ 3.8\\ 2.3\\ 2.9\\ 0.4\\ 4.8\\ 2.3\\ 3.1\\ \end{array}$	$\begin{array}{c} 4.9\\ 6.7\\ 10\\ 3.7\\ 2.1\\ 4.9\\ 0.8\\ 0.8\\ 1.3\\ 2.2\\ 16\\ 4.0\\ 1.5\\ 5.5\\ 6.4\\ 1.0\\ 1.5\\ 0.4\\ 4.0\\ 0.6\\ 3.4\\ 3.4\\ \end{array}$
Total	10	12	23

Badr-eddine Ngair	AEPSHEP-2024
Higgs measurement	24 / 26

Event selection and categorization

Category	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 1 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \ge 2 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \ge 2 \text{ VBF}$	
	Two isolated, different-flavor leptons ($\ell = e, \mu$) with opposite charge				
Preselection	$p_{\rm T}^{\rm lead} > 22 { m GeV}$, $p_{\rm T}^{\rm sublead} > 15 { m GeV}$				
reservention	$m_{\ell\ell} > 10 \text{ GeV}$				
		$p_{\rm T}^{\rm miss} > 20 { m ~GeV}$			
		$N_{b\text{-jet},(p _{\Gamma})}$	$_{20 \text{ GeV}} = 0$		
Background rejection	$\Delta \phi_{\ell\ell,E_{\mathrm{T}}^{\mathrm{miss}}} > \pi/2$				
	$p_{\mathrm{T}}^{\ell\ell} > 30 \; \mathrm{GeV}$	$\max\left(m_{\mathrm{T}}^{\ell}\right) > 50 \; \mathrm{GeV}$			
		$m_{\ell\ell} < 55 { m ~GeV}$			
		$\Delta\phi_{\ell\ell} < 1.8$			
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$			fail central jet veto		
topology			or	central jet veto	
			fail outside lepton veto	outside lepton veto	
			$ m_{jj} - 85 > 15 \text{ GeV}$	$m_{jj} > 120 \text{ GeV}$	
			or		
			$\Delta y_{jj} > 1.2$		
Discriminating fit variable	m _T DNN				

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Badr-eddine Ngair	AEPSHEP-2024
Higgs measurement	25 / 26

Analysis Overview

1 Event Characterization

- two leptons + two neutrinos (MET)
- 2 Background composition varies with jet count Njet.
 - ggF: Njet = 0, 1, and >= 2 (targeted by Dilepton Transverse Mass m_T)

$$m_{\mathcal{T}} = \sqrt{(\mathcal{E}_{\ell\ell} + \mathcal{E}_T^{\mathsf{miss}})^2 - \left|\mathbf{p}_{\mathcal{T},\ell\ell} + \mathcal{E}_T^{\mathsf{miss}}
ight|^2}$$

- VBF: Njet \geq 2 (targeted by a Deep Neural Network (DNN) trained on 15 variables using lepton, jet and E_T^{miss} information)
- **3** STXS framework is conducted to measure the cross-section
 - ggF: higher-order QCD and EW corrections
 - VBF: (Vightarrow q ar q)H topology

AEPSHEP-2024