AEPSHEP 2024 June 23rd, 2024

Phys.Rev.Lett. **115 (2015) 072001**

Observation of $J/\psi\, p$ **Resonances Consistent with Pentaquark States in** $\Lambda_b^0 \to J/\psi K^- p$ Decays

Quark model

For instructive reviews and related experimental reports see: Dzierba et al. (2005), Hicks (2012), and [S](http://dx.doi.org/10.1063/1.2220285)chumacher (2006).

- Single-arm forward spectrometer
- Optimised for the study of particles containing *b* and *c* quarks
- Coverage $2 < \eta < 5$ (0.7 deg < θ < 15.4 deg)

VErtex **LO**cator

- The closest to the interaction point.
- Silicon detectors
- Measures the tracks of the charged particle that are produced from the p-p collisions with high-resolution

Magnet

- Bending power: 4 T•m
- Tracker on each side to measure curvature

Trackers ● TT Tracker: Located before the magnet. ● T1-T3 Trackers: Located after the magnet.

Ring **I**maging **CH**erenkov**:**

- Measure speed of the particles
- Identify K/π/p over a broad range of momentum **~2-100 GeV**.

Calorimeters:

- Electromagnetic Calorimeter (ECAL): Measures energy of photons and electrons
- Hadronic Calorimeter (HCAL): Measures energy of hadrons

Muon systems:

- Consists of multiple layers of detectors interleaved with shielding material.
- Identify and track muons, which pass through the detector

Analysis strategy

- Search for exotic pentaquark contributions to the decay $\Lambda_{\sf b}^{\;0}\!\!\rightarrow{\mathscr I}\!\!{\mathscr V} K\,p$
- Dataset: 3 fb⁻¹ of p-p collision data collected at c.o.m energies of 7-8 TeV
- Need to
	- Select signal candidates from data
	- \circ Disentangle possible P_c signal from various Λ^* contributions

Signal candidate selection

- "Messy" hadron collider environment means high levels of background \rightarrow careful selection of signal candidates necessary
- Trigger & preselection using PID, kinematic and geometrical criteria, including
	- Good fits for each track
	- Positive identification of hadrons
	- \circ $\mathbf{p}_T > 250$ MeV for hadrons
	- \circ $\mathbf{p}_T > 550$ MeV for muons
	- \circ Good vertex fits for the *K-p*, dimuon, and Λ_b^0

- The combinatorial background is further suppressed with a multivariate selection
	- Boosted decision trees trained on simulated signal and data sideband background samples
	- A cut on the BDT response is chosen such that \sim 5% background remains within a 2 σ window of the $\Lambda_{\sf b}^{-0}$ signal region

 \bullet Misidentified backgrounds from B^0 are vetoed using cuts on the $J/\psi K p$ invariant mass

$$
|\mathcal{M}|^2=\sum_{\lambda_{\Lambda^0_b}}\sum_{\lambda_p}\sum_{\lambda\lambda_\mu}\bigg|\mathcal{M}^{\Lambda^*}_{\lambda_{\Lambda^0_b},\lambda_p,\Delta\lambda_\mu}\bigg|^2\\+e^{i\Delta\lambda_\mu\alpha_\mu}\sum_{\lambda^{P_c}_p}d^{1/2}_{\lambda^{P_c}_p,\lambda_p}(\theta_p)\mathcal{M}^{P_c}_{\lambda_{\Lambda^0_b},\lambda^{P_c}_p,\Delta\lambda_\mu}\bigg|^2\\
$$

General idea:

Express the total **decay amplitude** in terms of observable d.o.f, and fit to extract parameters and fractions of each component

$$
|\mathcal{M}|^2 = \sum_{\lambda_{\Lambda_D^0}} \sum_{\lambda_p} \sum_{\Delta\lambda_{\mu}} \left| \mathcal{M}^{\Lambda^*}_{\lambda_{\Lambda_D^0},\lambda_p,\Delta\lambda_{\mu}} \right|
$$

+ $e^{i\Delta\lambda_{\mu}\alpha_{\mu}} \sum_{\lambda_P^P c} d_{\lambda_P^Pc,\lambda_p}^{1/2}(\theta_p) \mathcal{M}^P_{\lambda_{\Lambda_D^0},\lambda_P^Pc,\Delta\lambda_{\mu}}$

Write the amplitude in the **helicity basis**, summing over all initial state and final state helicities

Amplitude analysis

$$
|\mathcal{M}|^2 = \sum_{\lambda_{\Lambda^0_b}} \sum_{\lambda_p} \sum_{\Delta\lambda_\mu} \bigg| \mathcal{M}^{\Lambda^*}_{\lambda_{\Lambda^0_b},\lambda_p,\Delta\lambda_\mu}
$$

$$
+ \left. e^{i\Delta \lambda_\mu \alpha_\mu} \sum_{\lambda_P^{P_c}} {d_{\lambda_P^{P_c},\lambda_p}^{1/2}} (\theta_p) \mathcal{M}^{P_c}_{\lambda_{\Lambda^0_b},\lambda_P^{P_c},\Delta \lambda_\mu} \right|^2
$$

 $\rm J/\Psi$

Write the amplitude in the **helicity basis**, summing over all initial state and final state helicities

Amplitude analysis

Amplitude fit with * resonances only

- Extended fit model: all possible known Λ^* states as decay amplitudes \rightarrow 146 free parameters
- Masses and widths of Λ^* are fixed to PDG values
- Does **not** reproduce m_{J/ ψ p spectrum,} even if additional resonant and non-resonant components are added

Amplitude fit with 1 *P c* state $+ \Lambda^*$ resonances

- Reduced fit model: only well-motivated Λ^* resonances \rightarrow 64 free parameters
- Masses and widths of Λ^* are fixed to PDG values
- Add one P_c state with $J = 5/2$ ⁺
- **•** Better reproduction of m_{J/ ψ p} spectrum, but **fit quality still insufficient**

Amplitude fit with 2 *P c* states $+ \Lambda^*$ resonances

- Reduced fit model: only well-motivated Λ^* resonances \rightarrow 64 free parameters
- Masses and widths of Λ^* are fixed to PDG values
- \bullet Add two P_c states \to good fit quality
- Possible spin parity configurations:

- **Most important** systematics for mass, width and fit fractions of both P_c resonances:
	- \circ Extended vs. reduced fitting model (i.e. how many Λ^* resonances are included)
	- Different spin parity configurations allowed by fits
- Examples of checks for the **stability of the results:**
	- Two different fit methods, independently developed
	- \circ Fit reproduces other observables: m_{Kp} spectrum, angular parameters
	- Results are stable with LHCb dipole in up and down configurations
	- \circ Removed veto for B⁰ and modeled background explicitly \rightarrow consistent results

Final Result

- Best fit: combined significance of 15σ
- Opposite parity and spins 3/2 and 5/2
- *P c* (4380) resonance
	- \circ Fit fraction $(4.1 \pm 0.5 \pm 1.1)$ %
	- Mass *m* = (3280 ± 8 ± 29) MeV
	- \circ Width $\Gamma = (205 \pm 18 \pm 86)$ MeV
- \bullet $P_c(4450)$ resonance
	- \circ Fit fraction $(8.4 \pm 0.7 \pm 4.2)$ %
	- Mass *m* = (4449.8 ± 1.7 ± 2.5) MeV
	- \circ Width Γ = (39 \pm 5 \pm 19) MeV
- Uncertainties: statistical, systematic

After the 2015 LHCb..

After the 2015 LHCb..

Backup

Definition of θ p

Figure 9: Definition of the θ_p angle.

Pentaquarks structure

https://commons.wikimedia.org/w/index.php?curid=41591193

Characteristics:

- classified as **an exotic hadron**
- typically have a higher mass than traditional hadrons
- decay through intermediate states that involve both baryons and mesons

Possible configurations:

- *1. Tightly bound state*
- *2. Molecular state*
- *3. Di-quark and Tri-quark clusters*

What differentiates pentaquark states from any other states?

See lectures by C. Shen

PID(Particle Identification) at LHCb

- For charged PID, $1)$
	- $DL_{X_{\pi}}$: log likelihood difference particle hypotheses of X and π as reference $L = L_{RICH} * L_{calo} * L_{muon}$
	- $ProbNNX$: Neural net output, trained on simulation with input from detector components + tracking information
- For **neutral** PID, $\left(\begin{matrix} 1 \end{matrix} \right)$
	- Dedicated neural nets

Trigger & Preselection

Trigger $(J/\psi \rightarrow \mu^+)$

- each muon with $p_T > 500$ MeV
- dimuon with opposite charge
- dimuon with vertex fit parameter χ^2 < 16
- dimuon with vertex significantly displaced from the nearest pp interaction vertex
- dimuon invariant mass within 120MeV of J/ψ (~3.1GeV)

Preselection

Tracks:

- good track
- remove duplicated reconstruction

Muon:

- each muon with $p_T > 550 MeV$
- dimuon constrained to the J/ψ mass

 K^-p :

• vertex fit parameter χ^2 < 16

Hadrons:

- $p_T > 250MeV$
- impact parameter(respect to primary vertex) χ^2 > 9
- positive PID

 Λ_h^0 .

- vertex fit parameter $\chi^2 > 50$ for 5 degrees of freedom
- flight distance > 1.5 mm

•
$$
\cos\left(\overrightarrow{A_b^0} \leftrightarrow \overrightarrow{p_{A_b^0}}\right)
$$

TABLE I. The Λ^* resonances used in the different fits. Parameters are taken from the PDG [12]. We take $5/2^-$ for the J^P of the $\Lambda(2585)$. The number of LS couplings is also listed for both the reduced and extended models. To fix overall phase and magnitude conventions, which otherwise are arbitrary, we set $B_{0,\frac{1}{2}} = (1,0)$ for $\Lambda(1520)$. A zero entry means the state is excluded from the fit.

State	J^P	M_0 (MeV)	Γ_0 (MeV)	Number Reduced	Number Extended
$\Lambda(1405)$	$1/2^{-}$	$1405.1_{-1.0}^{+1.3}$	50.5 ± 2.0		
$\Lambda(1520)$	$3/2^{-}$	1519.5 ± 1.0	15.6 ± 1.0		
$\Lambda(1600)$		1600	150		
$\Lambda(1670)$	$1/2^{-}$	1670	35		
$\Lambda(1690)$	$3/2^{-}$	1690	60		
$\Lambda(1800)$		1800	300		
$\Lambda(1810)$	$/2^+$	1810	150		
$\Lambda(1820)$	$5/2^{+}$	1820	80		h
$\Lambda(1830)$	$5/2^{-}$	1830	95		
$\Lambda(1890)$	$3/2^{+}$	1890	100		
$\Lambda(2100)$	$7/2^{-}$	2100	200		
$\Lambda(2110)$	$5/2^{+}$	2110	200		h
$\Lambda(2350)$	$9/2^+$	2350	150		
$\Lambda(2585)$		\approx 2585	200		σ

Pathways to pentaquarks

1976 PDG showed the candidates for baryon states with positive strangeness **1994 PDG** (*+ subsequent versions*) dismissed the candidates **2003 LEPS** *claimed* a discovery of the Θ^+ , matched the prediction given by DPP (1997), followed by other (10) collaborations **2006 PDG**: "The conclusion that pentaquarks in general, and the Θ^+ , in particular, do *not exist, appears compelling.*"

2009 LEPS *claimed* (once again) the existence of a narrow state: $1524 \pm 4 \text{ MeV}/c^2$

For instructive reviews and related experimental reports see: Dzierba et al. (2005), Hicks (2012), and Schumacher (2006).

Finally.. The 2015 LHCb results

