AEPSHEP 2024 June 23rd, 2024

Phys.Rev.Lett. 115 (2015) 072001

Observation of $J/\psi p$ Resonances Consistent with Pentaguark States in $\Lambda_b^0 o J/\psi K^- p$ Decays

Quark model

A SCHEMATIC MODEL OF BARYONS AND MESONS * M.GELL-MANN Phys.Lett. 8 (1964) 214-215 itute of Technology, Pasadena, California	1964 Classification of mesons and baryons
Received 4 January 1964 M. Gell-Mann assume that the strong interactions of bary- mesons are correctly described in terms of mesons. The most interesting example of the strong interaction interesting example of the strong interaction in terms of the mesons. The most interesting example of the strong interaction is the strong interaction of the strong interaction is the strong interaction of the strong	<i>qq</i> <i>qqq,qqq</i> 1977-1978 Model of diquarks and
anti-triplet as anti-quarks q. Baryons can now be constructed from quarks by using the combinations (qqq) , $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. It is assuming that the lowest	di-antiquarks (Jaffe), with its development (Strottman)
AN SU3 MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BREAKING 10.17181/CERN-TH-401 *)	1987 <i>qqqqq̄</i> The name of "pentaquark" was proposed by Lipkin .
G.Zweig CERN - Geneva	

For instructive reviews and related experimental reports see: Dzierba et al. (2005), Hicks (2012), and Schumacher (2006).

- Single-arm forward spectrometer
- Optimised for the study of particles containing *b* and *c* quarks
- Coverage 2 < η < 5
 (0.7 deg < θ < 15.4 deg)

VErtex LOcator

- The closest to the interaction point.
- Silicon detectors
- Measures the tracks of the charged particle that are produced from the p-p collisions with high-resolution

Magnet

- Bending power: 4 T•m
- Tracker on each side to measure curvature

GeV.

Calorimeters:

- Electromagnetic Calorimeter (ECAL): Measures energy of photons and electrons
- Hadronic Calorimeter (HCAL): Measures energy of hadrons

Muon systems:

- Consists of multiple layers of detectors interleaved with shielding material.
- Identify and track muons, which pass through the detector

Analysis strategy

- Search for exotic pentaquark contributions to the decay $\Lambda_{\rm b}^{0} \rightarrow J/\Psi K p$
- Dataset: 3 fb⁻¹ of p-p collision data collected at c.o.m energies of 7-8 TeV
- Need to
 - Select signal candidates from data
 - $\circ~$ Disentangle possible P_{c} signal from various Λ^{*} contributions

Signal candidate selection

- "Messy" hadron collider environment means high levels of background → careful selection of signal candidates necessary
- Trigger & preselection using PID, kinematic and geometrical criteria, including
 - \circ $\,$ Good fits for each track
 - Positive identification of hadrons
 - \circ p_T > 250 MeV for hadrons
 - \circ **p**_T > 550 MeV for muons
 - Good vertex fits for the *K*-*p*, dimuon, and $\Lambda_{\rm b}^{0}$

- The combinatorial background is further suppressed with a multivariate selection
 - Boosted decision trees trained on simulated signal and data sideband background samples
 - A cut on the BDT response is chosen such that ~5% background remains within a 2σ window of the $\Lambda_{\rm b}^{0}$ signal region

• Misidentified backgrounds from B^0 are vetoed using cuts on the $J/\Psi K p$ invariant mass

 $|\mathcal{M}|^2 = \sum_{\lambda_{\Lambda^0_i}} \sum_{\lambda_p} \sum_{\Delta\lambda_\mu} \left| \mathcal{M}^{\Lambda^*}_{\lambda_{\Lambda^0_b},\lambda_p,\Delta\lambda_\mu} \right|$ Λ_{h}^{0} P^{*}_c $+ e^{i\Delta\lambda_{\mu}lpha_{\mu}} \sum_{\lambda_{p}^{P_{c}} \neq \lambda_{p}} d^{1/2}_{\lambda_{p}^{P_{c}},\lambda_{p}}(heta_{p}) \mathcal{M}^{P_{c}}_{\lambda_{\Lambda_{b}^{0}},\lambda_{p}^{P_{c}},\Delta\lambda_{\mu}} \Big|$

General idea:

Express the total **decay amplitude** in terms of observable d.o.f, and fit to extract parameters and fractions of each component

$$egin{aligned} |\mathcal{M}|^2 &= \sum_{\lambda_{\Lambda_{b}^{0}}} \sum_{\lambda_{p}} \sum_{\Delta\lambda_{\mu}} \left| \mathcal{M}_{\lambda_{\Lambda_{b}^{0}},\lambda_{p},\Delta\lambda_{\mu}}^{\Lambda^{*}}
ight. \ &+ e^{i\Delta\lambda_{\mu}lpha_{\mu}} \sum_{\lambda_{p}^{P_{c}}} d_{\lambda_{p}^{P_{c}},\lambda_{p}}^{1/2}(heta_{p}) \mathcal{M}_{\lambda_{\Lambda_{b}^{0}},\lambda_{p}^{P_{c}},\Delta\lambda_{\mu}}^{P_{c}} \end{aligned}$$

Write the amplitude in the **helicity basis**, summing over all initial state and final state helicities

Amplitude analysis

$$|\mathcal{M}|^2 = \sum_{\lambda_{\Lambda_b^0}} \sum_{\lambda_p} \sum_{\Delta\lambda_\mu} \left| \mathcal{M}_{\lambda_{\Lambda_b^0},\lambda_p,\Delta\lambda_\mu}^{\Lambda^*} \right|$$

$$+ e^{i\Delta\lambda_{\mu}lpha_{\mu}} \sum_{\lambda_{p}^{P_{c}}} d^{1/2}_{\lambda_{p}^{P_{c}},\lambda_{p}}(heta_{p}) \mathcal{M}^{P_{c}}_{\lambda_{\Lambda_{b}^{0}},\lambda_{p}^{P_{c}},\Delta\lambda_{\mu}} \Big|^{2}$$

K⁻ Λ_b^0 P_c* J/Ψ **K**⁻ Λ^* Λ_b^0 J/Ψ

Write the amplitude in the **helicity basis**, summing over all initial state and final state helicities

Amplitude analysis

Amplitude fit with Λ^* resonances only

- Extended fit model: all possible known Λ* states as decay amplitudes → 146 free parameters
- Masses and widths of A* are fixed to PDG values
- Does not reproduce m_{J/ψ p} spectrum, even if additional resonant and non-resonant components are added

Amplitude fit with 1 P_c state + Λ^* resonances

- Reduced fit model: only well-motivated Λ^* resonances \rightarrow 64 free parameters
- Masses and widths of A* are fixed to PDG values
- Add one P_c state with $J = \frac{5}{2}^+$
- Better reproduction of m_{J/ψ p} spectrum,
 but fit quality still insufficient

Amplitude fit with 2 P_c states + Λ^* resonances

- <u>Reduced fit model</u>: only well-motivated Λ^* resonances \rightarrow 64 free parameters
- Masses and widths of A* are fixed to PDG values
- Add two P_c states \rightarrow good fit quality
- Possible spin parity configurations:

	Best fit	1σ worse	2.3 σ worse
<i>P_c</i> (4380)	$J^{p} = 3/2^{-}$	$J^{p} = 3/2^{+}$	$J^{p} = 5/2^{+}$
<i>P_c</i> (4450)	$J^{p} = 5/2^{+}$	$J^{p} = 5/2^{-}$	$J^{p} = 3/2^{-}$

- **Most important** systematics for mass, width and fit fractions of both *P_c* resonances:
 - Extended vs. reduced fitting model (i.e. how many Λ^* resonances are included)
 - Different spin parity configurations allowed by fits
- Examples of checks for the **stability of the results**:
 - Two different fit methods, independently developed
 - Fit reproduces other observables: m_{κ_p} spectrum, angular parameters
 - Results are stable with LHCb dipole in up and down configurations
 - Removed veto for B^0 and modeled background explicitly \rightarrow consistent results

Final Result

- Best fit: combined significance of 15σ
- Opposite parity and spins 3/2 and 5/2
- $P_c(4380)$ resonance
 - Fit fraction $(4.1 \pm 0.5 \pm 1.1)$ %
 - Mass *m* = (3280 ± 8 ± 29) MeV
 - Width Γ = (205 ± 18 ± 86) MeV
- $P_c(4450)$ resonance
 - Fit fraction (8.4 ± 0.7 ± 4.2) %
 - Mass *m* = (4449.8 ± 1.7 ± 2.5) MeV
 - Width $\Gamma = (39 \pm 5 \pm 19) \text{ MeV}$
- Uncertainties: statistical, systematic

After the 2015 LHCb..

After the 2015 LHCb..

Backup

Definition of θ_{p}

Figure 9: Definition of the θ_p angle.

Pentaquarks structure

https://commons.wikimedia.org/w/index.php?curid=41591193

Characteristics:

- classified as **an exotic hadron**
- typically have a higher mass than traditional hadrons
- decay through intermediate states that involve both baryons and mesons

Possible configurations:

- 1. Tightly bound state
- 2. Molecular state
- 3. Di-quark and Tri-quark clusters

What differentiates pentaquark states from any other states?

See lectures by C. Shen

PID(Particle Identification) at LHCb

- 1) For charged PID,
 - $DLL_{X_{\pi}}$: log likelihood difference particle hypotheses of X and π as reference $L = L_{RICH} * L_{calo} * L_{muon}$
 - ProbNNX : Neural net output, trained on simulation with input from detector components + tracking information
- 1) For neutral PID,
 - Dedicated neural nets

Trigger & Preselection

Trigger (J/ $\psi \rightarrow \mu^+$)

- each muon with $p_T > 500 MeV$
- dimuon with opposite charge
- dimuon with vertex fit parameter $\chi^2 < 16$
- dimuon with vertex significantly displaced from the nearest pp interaction vertex
- dimuon invariant mass within 120 MeV of $J/\psi(\sim 3.1 GeV)$

Preselection

Tracks:

- good track
- remove duplicated reconstruction

Muon:

- each muon with $p_T > 550 MeV$
- dimuon constrained to the J/ψ mass

K⁻*p* :

• vertex fit parameter $\chi^2 < 16$

Hadrons:

- $p_T > 250 MeV$
- impact parameter(respect to primary vertex) $\chi^2 > 9$
- positive PID

 Λ_b^0 :

- vertex fit parameter $\chi^2 > 50$ for 5 degrees of freedom
- flight distance > 1.5mm

•
$$cos\left(\overrightarrow{\Lambda_b^0}\leftrightarrow\overrightarrow{p_{\Lambda_b^0}}\right)$$

TABLE I. The Λ^* resonances used in the different fits. Parameters are taken from the PDG [12]. We take $5/2^-$ for the J^P of the $\Lambda(2585)$. The number of *LS* couplings is also listed for both the reduced and extended models. To fix overall phase and magnitude conventions, which otherwise are arbitrary, we set $B_{0,\frac{1}{2}} = (1,0)$ for $\Lambda(1520)$. A zero entry means the state is excluded from the fit.

State	J^P	M_0 (MeV)	Γ_0 (MeV)	Number Reduced	Number Extended
$\Lambda(1405)$	1/2-	$1405.1^{+1.3}_{-1.0}$	50.5 ± 2.0	3	4
$\Lambda(1520)$	$3/2^{-}$	1519.5 ± 1.0	15.6 ± 1.0	5	6
$\Lambda(1600)$	$1/2^{+}$	1600	150	3	4
$\Lambda(1670)$	$1/2^{-}$	1670	35	3	4
$\Lambda(1690)$	$3/2^{-}$	1690	60	5	6
$\Lambda(1800)$	$1/2^{-}$	1800	300	4	4
$\Lambda(1810)$	$1/2^{+}$	1810	150	3	4
$\Lambda(1820)$	$5/2^{+}$	1820	80	1	6
$\Lambda(1830)$	$5/2^{-}$	1830	95	1	6
$\Lambda(1890)$	$3/2^{+}$	1890	100	3	6
$\Lambda(2100)$	7/2-	2100	200	1	6
$\Lambda(2110)$	$5/2^{+}$	2110	200	1	6
$\Lambda(2350)$	$9/2^{+}$	2350	150	0	6
$\Lambda(2585)$?	≈2585	200	0	6

Pathways to pentaquarks

1976 PDG showed the candidates for baryon states with positive strangeness **1994 PDG** (+ *subsequent versions*) dismissed the candidates **2003 LEPS** *claimed* a discovery of the Θ^+ , matched the prediction given by **DPP** (1997), followed by other (10) collaborations **2006 PDG**: "The conclusion that pentaquarks in general, and the Θ^+ , in particular, <u>do</u> <u>not exist, appears compelling</u>."

2009 LEPS *claimed* (once again) the existence of a narrow state: $1524 \pm 4 \; {
m MeV}/c^2$

For instructive reviews and related experimental reports see: Dzierba et al. (2005), Hicks (2012), and Schumacher (2006).

Finally.. The 2015 LHCb results

Observation of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda_b^0 \to J/\psi K^- p$ Decays		
Phys.Rev.Lett. 115 (2015) 072001		R. Aaij <i>et al.</i> *
(LHCb Collaboration) (Received 13 July 2015; published 12 August 2015)		