Measurement of higher-order harmonic azimuthal anisotropy in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

Content

- Introduction
- CMS Detector
- Event and Track Reconstruction
- Glauber Model Eccentricity
- Methods
- Results
- Summary

- Anisotropic momentum distribution
- Quark Gluon Plasma (QGP) in local thermal equilibrium
- Anisotropy of event should carry the characteristics and the initial condition of QGP
- This then should reveal hydrodynamics and model of QGP.

 $+2v_4\cos 4(\phi-\Psi_4)$

Introduction

- CMS Pb-Pb collision data
- Three methods to measure the different order anisotropic flow with respect to centrality, momentum and eccentricity.
 - Event-plane
 - Cumulant
 - Lee-Yang Zero

0% Centrality

100% Centrality

CMS Detector

- Silicon trackers ($|\eta| < 2.4$)
 - Charged particles from track reconstruction for anisotropy measurement

- Hadron Forward (HF) Calorimeter $(2.9 < |\eta| < 5.2)$
 - Segmented into $(\phi, \eta) = (0.175, 0.175)$ "tower"
 - Used for trigger and beam halo rejection
 - Reference for event-plane angle

https://cms-opendata-workshop.github.io/workshop2023-lesson-cms-detector/aio/index.html

Event and Track Reconstruction

- Events triggered by HF coincidence
- 10cm from nominal interaction point
- Remove Ultraperipheral events
 - Three towers in HF with at least 3 *GeV* energy deposit.
 - Vertex reconstruction
 - Cluster shape from primary vertex
- 22.6×10⁶ events = $3\mu b^{-1}$

Glauber Model Eccentricity

Nucleon density described by Woods-Saxon density

•
$$\rho(r) = \frac{\rho_0(1 + \frac{wr^2}{R^2})}{1 + e^{\frac{r-R}{a}}}$$

- A sequence of independent nucleon-nucleon collisions.
 - Simulate spatial eccentricity

•
$$\epsilon_{n,m} = \frac{\sqrt{\langle r_{\perp}^n \cos[n(\phi - \Phi_m)] \rangle^2}}{\langle r_{\perp}^n \rangle}$$
, $\Phi_m = \frac{1}{m} \tan^{-1} \left\{ \frac{\langle r_{\perp}^m \sin[m\phi] \rangle}{\langle r_{\perp}^m \cos[m\phi] \rangle} \right\}$

Methods (Event-Plane)

- Sum over HF tower weighted by energy deposit.
 - Approximating $\Psi_m^{\pm} = \frac{1}{m} \tan^{-1} \left\{ \frac{\omega_i \sin(m\phi_i)}{\omega_i \cos(m\phi_i)} \right\}$
- In central region $|\eta| < 0.8$, we can measure anisotropy of order n
 - $v_n^{obs}(p_T, \eta) = \ll \cos[n(\phi \Psi_m^{\pm})] \gg$
 - (\ll > indicates average over all particles over all events)
- For small p_T , misconstruction of charged particle \cong 5-25%
 - Require correction using a separate reference angle based on charged track.

Methods (Cumulant & Lee-Yang Zero)

- Generating functions correlation among particles
 - Adding over all particle correlation gives cumulant
- Reference flow & Differential flow
 - Reference flow averages over broad range of $|\eta| < 0.8$, $p_T < 12~{\rm GeV}$
 - Differential flow measured with respect to reference flow particles
 - Divided into p_T bins
 - Particle from narrow bin, rest from reference region
- Lee-Yang Zero
 - LYZ accounts for all non-flow contributions that would be neglected in the other methods
 - asymptotic behavior of the cumulant expansion (infinite particle correlation)
 - 2,4,6 order measured reference to 2nd order reference flow

Results

- (Left) Second order anisotropy highly depends on the centrality
- (Right) Higher order terms no effected by geometry of QGP, rather shows flat distribution

Results

- Eccentricity vs anisotropy
- Linear response at low ϵ
- Large $\epsilon \rightarrow$ smaller QGP
 - Not enough time for particle to interact with QGP

CMS, ATLAS, ALICE, PHENIX and IP-Glasma + MUSIC model

Summary

- High order anisotropy should carry QGP information
 - Initial condition, viscosity, speed of sound, fluctuation
- Using three different method, the higher order anisotropies were measured
- Furthermore, results of second order measurement compared among different methods and experiments
- Many model assumptions of QGP seems to agree with the data.

Back up

Methods (Cumulant & Lee-Yang Zero)

- Generating functions correlation among particles
 - $G_n(j,k) = < \prod_{m=1}^{M} (1 + r_0 \sqrt{j} e^{i \left(\frac{2\pi k}{8} + \frac{n\phi_m}{M}\right)}) >$
 - j=1,2,3, k=1,2,...,7, two(three) r_0 for reference (differential) flow
- Cumulant → reference flow (overall) & differential flow (narrow)
 - $v_n\{m\} = \sqrt[m]{-c_n\{m\}}$
 - Differential flow measured with respect to reference flow
 - One particle from narrow bin, rest from reference region

Methods (Lee-Yang Zero)

• Lee-Yang Zero

- Similar to generating function
- $g^{\theta}(ir) = \prod_{j=1}^{M} (1 + ir\omega_j \cos(n(\phi_j \theta)))$
- The minimum of such function found for 5 θ values
- Integrated flow estimated as $V_n^{\theta} = \frac{j_{01}}{r_0^{\theta}}$ (j₀₁: First zero of Bessel function J₀)
- With this integrated flow, differential flow estimated by

•
$$\frac{v_{mn}'}{V_n^{\theta}} = \frac{J_1(j_{01})}{J_m(j_{01})} Re \left(\frac{\left(g^{\theta}(ir_0^{\theta}) \frac{\cos(mn(\psi-\theta))}{1+ir_0^{\theta}\omega_{\psi}\cos(n(\psi-\theta))} \right)_{\psi}}{i^{m-1} \left(g^{\theta}(ir_0^{\theta}) \sum_j \frac{\cos(mn(\phi_j-\theta))}{1+ir_0^{\theta}\omega_j\cos(n(\phi_j-\theta))} \right)_{events}} \right)$$

Event-Based Systematics

- Different hadrons can have different v_n values and tracking efficiency affecting the unidentified, charged-particle results.
- v_n sensitivity to centrality calibration by trigger efficiency scale $\pm 3\%$.
- HF+ and HF- resolution difference correction.
 (Significant in high order)
- Various track quality requirements (pointing back to vertex, goodness-of-fit...).

TABLE III. Systematic uncertainties in the $v_3{\{\Psi_3\}}$ values as a function of centrality in percent. Common uncertainties are shown at the top of the table, followed by those specific to the differential $(p_T$ -dependent) and integral $(|\eta|$ -dependent) measurements.

Source	Centrality				
		0%-10%	10%-50%	50%-70%	
Particle		0.5	0.5	0.5	
Centrality determination		1.0	1.0	1.0	
Resolution correction		1.0	1.0	3.0	
[Differential]	$p_{\rm T}~({\rm GeV}/c)$				
Track quality requirements Total (<i>p</i> _T)	0.3–0.4 0.4–0.8 0.8–8.0 0.3–0.4	20 3.0 1.0 20	10 2.0 1.0 10	20 2.0 1.0 20	
[Integral]	0.4-0.8 0.8-8.0 $ \eta $	3.4 1.8	2.5 1.8	3.8 3.4	
Track quality requirements Total (η)	0.0–1.6 1.6–2.4 0.0–1.6 1.6–2.4	3.0 6.0 3.4 6.2	2.0 4.0 2.5 4.3	2.0 4.0 3.8 5.1	

Cumulant and LYZ Systematics

TABLE X. Systematic uncertainties in the v_4 {5} values as a function of centrality in percent. Common uncertainties are shown at the top of the table, followed by those specific to the differential (p_T -dependent) and integral ($|\eta|$ -dependent) measurements.

TABLE XII. Systematic uncertainties in the v_6 {LYZ} values as a function of centrality in percent. Common uncertainties are shown at the top of the table, followed by those specific to the differential (p_T -dependent) and integral ($|\eta|$ -dependent) measurements.

Source		Centrality			Source		Centrality		
		5%-10%	10%-40%	40%-60%			5%-10%	10%-40%	40%-60%
Particle		0.5	0.5	0.5	Particle		0.5	0.5	0.5
Centrality determination		1.0	1.0	1.0	Centrality determination		1.0	1.0	1.0
Multiplicity fluctuations		1.0	2.0	3.0	Multiplicity fluctuations		0.1	0.9	2.0
$r_0(\%)$		5.0	3.0	3.0	[Differential]	$p_{\tau}(GeV/c)$			
[Differential]	$p_{\rm T}~({\rm GeV}/c)$				Track quality	0.3-0.5	16	12	7.5
Track quality	0.3-0.5	15	5.0	5.0	requirements	0.5-8.0	6.0	4.0	3.0
requirements	0.5 - 0.8	10	3.0	3.0	Total $(p_{\rm T})$	0.3-0.5	16	13	7.8
	0.8-8.0	5.0	1.0	1.0		0.5 - 8.0	6.1	4.2	3.8
Total $(p_{\rm T})$	0.3–0.5 0.5–0.8	16 11	6.3 4.8	6.7 5.3	[Integral]	$ \eta $			
	0.8 - 8.0	7.2	3.9	4.5	Track quality	0.0 - 0.8	3.0	2.5	3.5
[Integral]	$ \eta $				requirements	00.08	2.2	2.0	4.2
Track quality requirements	0.0–0.8	5.0	3.0	3.0	$\frac{10\tan\left(\eta \right)}{2}$	0.0-0.8	3.2	2.9	4.2
Total (η)	0.0 - 0.8	7.2	4.8	5.3					

results with and without the selection of 80% of the mean multiplicity.

Heavy Ion Model

- <u>Glauber model</u>
 - Collision model

- the nucleus-nucleus interaction in terms of elementary nucleon-nucleon interaction
- It assumes
 - The nuclei follow a straight-line trajectory
 - The nucleons as a point-like object

- Color Glass Condensate (CGC) model
 - Nucleus model before collision

- Dense gluonic states in hadrons which universally appear in the high-energy limit of scattering
 - When the density of gluons becomes high, they start to interact with each other → CGC
- Fluctuations of a fast moving parton become real particles in reactions

The anisotropy also depends on the initial conditions,

whether the Glauber-like picture prevails or if gluon-saturated effects, as found in the CGC model

Heavy Ion Model

• With this experiment, it cannot be determined which nuclear model describes the collision better.

Additional back up

Comparison of the v_4 (left, fig 10) and v_6 (right, fig 12) results of CMS, ATLAS, ALICE, PHENIX and IP-Glasma + MUSIC model