

Measurement of *CP*-averaged observables in the *B ⁰→ K*∗*⁰µ +µ [−]* decay

RAGANSU CHAKKAPPAI ON BEHALF OF GROUP D

Introduction

- FCNC, rare process (BF: 10^{-7}), electroweak penguin decay at loop level
- Effects of new physics effects could show up at at loop level
- From 2013, series of anomalies appear in B meson decays of $b \rightarrow s l^+ l^-$ transition
- LHCb measured the angular observables S_3 to S_9 from $B^0 \rightarrow$ $K^{*0}\mu^+\mu^-$ decay

$$
B^0 \to K^{*0} \mu^+ \mu^-
$$

Angular Distribution

- Assuming B^0 and $\overline{B^0}$ behaves similarly ("CP-averaged")
- Differential angular distribution can be expressed in terms of angular observables. longitudinal polarisation of the K*⁰ meson
- The observables \hat{F}_L , A_{FB} and S_i depend on q^2 , which determines the Wilson coefficients in the decay process
- $K^{*0} \rightarrow K^+ \pi^-$ decay strongly, occur in two different angular momentum configurations S-wave ($l = 0$) or P – wave ($l = 1$)
- Modified angular distribution to account for S-wave contamination in P-wave mode $K^{*0} \rightarrow K^+ \pi^-$ decays. $P_{i=4,5,6,8}' =$

$$
\mathbf{3}^{\top}
$$

CP-averaged observables.

forward-backward asymmetry

of the dimuon system.

Single-arm forward spectrometer designed for high-precision physics Unique option to perform measurements in the forward region $2 < \eta < 5$

Single-arm forward spectrometer designed for high-precision physics Unique option to perform measurements in the forward region $2 < \eta < 5$

VErtex **LO**cator ECAL HCAL $M4$ $M5$ SPD/PS $M₃$ -250 mrad $M₂$ Magnet RICH₂ M₁ \checkmark Only **7 mm** distance to beam **Excellent** impact parameter Vertex resolution to identify **secondary** vertices Decay-time resolution < **50 fs** (decay-time measurement)

Single-arm forward spectrometer designed for high-precision physics Unique option to perform measurements in the forward region $2 < \eta < 5$

Single-arm forward spectrometer designed for high-precision physics Unique option to perform measurements in the forward region $2 < \eta < 5$

 \checkmark Consists of: \triangleright Outer Tracker (T1-T3) \triangleright Silicon Tracker (TT)

Trackers

 \checkmark Precision momentum resolution $\delta p / p = 0.4 - 0.6\%$ Excellent mass resolution

Single-arm forward spectrometer designed for high-precision physics Unique option to perform measurements in the forward region $2 < \eta < 5$

Muon systems

- \checkmark Fast information for the high- p_T muon trigger at the earliest level (**Level-0**)
- \checkmark Muon identification for the high-level trigger (**HLT**)
- Equiped with **MWPC** and **GEMs** for a high interaction rate

Decay Kinematics

● Differential decay depending on angular distributions

$$
\frac{d^4\Gamma}{dq^2 d\cos\theta_l d\cos\theta_{K^*} d\phi} = \frac{9}{32\pi} I(q^2, \theta_l, \theta_{K^*}, \phi)
$$

• Decay described by three angles $(\theta_{I}, \phi, \theta_{K})$ with q^{2} being the invariant squared mass of the $\mu\mu$ system

Background

- Background component: combinatorial background + peaking backgrounds
	- non-single b-hadron decay: Smoothly distributed in m($K^+\pi^-\mu^+\mu^-$)
	- o Misidentification of the final-state particles: accumulate in specific regions of the reconstructed mass
- **Removal of BKGs**
	- peaking bkg (Apply vetos): residual BKG (**<1%**), **neglectable** in the angular analysis
	- combinatorial bkg (boosted decision tree (BDT)): reject **97%** combinatorial bkg, remains 85% sig.

Selection Cuts

- Candidates are required to have
	- 5170 $\lt m(K^+\pi^-\mu^+\mu^-)$ \lt 5700 MeV/ c^2
	- $\sim 795.9 < m(K^+\pi^-) < 995.9 \ MeV/c^2$
- The tracks are fitted to a common vertex which is required to have good quality
- The four tracks are required to originate from displaced secondary vertices

Observables

- **F**_{*l*} corresponds to the fraction of longitudinal polarisation of the K^{∗0} meson
- A_{FB} is the forward-backward asymmetry of the dimuon system
- **S**₅ depends on polarisation amplitudes
- $P'_{5} = \frac{S_{5}}{\sqrt{F_{5}(1)}}$ $F_L(1-F_L)$ for comparison to other studies with reduced uncertainties

Observables used for fits by varying real part of vectorial coupling strength *C⁹* being sensitive to new physics in the studied process

Uncertainties: Fit Bias

- Large number of parameters can return observable in biased way. ("do fit errors provide the correct converge")
- Biased observed are small: < 10% of statistical uncertainty
- Boundary effects in the observables contributing to biases. Significant effect comes from requiring S-wave fraction, F_S to be greater than zero
- Statistical uncertainty are corrected for under or over convergence and systematic uncertainty equal to size of the observed bias is assigned

Uncertainties: Systematics

- Statically dominated results and systematic uncertainties are small
- \bullet *q*² acceptance variation is the most dominant
- Peaking background and bias correction also have significant contributions to systematics

Fit Results

- Observables A_{FB} , F_{L} and S_{5} compared to SM prediction based on ASZB (see [1,2]) and *P5 '* to SM prediction based on DHMV (see [3,4])
- No significant discrepancy for each observable separately
- Combined fit gives overall tension with SM around 3.3 σ

[1]: arXiv:1503.05534, [2]: arXiv:1411.3161 [3]: arXiv:1407.8526, [4]: arXiv:1006.4945

Conclusions

- The most precise measurements of the observables to date are done by LHCb and presented in the paper. A tension with the SM of 3.3σ was observed
- The measurement is statistically limited
- Most of the observables agree individually, except the local discrepancy in the P_5 observable
- More data is required to draw conclusions about the effects of new physics

Thank You

Back up

$B^0 \to K^{*0} \mu^+ \mu^-$ angular distribution

- Assume B^0 and \bar{B}^0 behaves similarly ("CP-averaged"), angular distribution expression as:
- Quantities F_L , A_{FB} , S_i dependent on $q^2 \rightarrow$ determine Wilson coefficients.
- \bullet $K^{*0} \rightarrow K^{+}\pi^{-}$ decay strongly, occur in two different angular momentum ($l = 0$ or $l = 1$) configurations (S-wave or Pwave).

$$
\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^4(\Gamma + \bar{\Gamma})}{dq^2 d\bar{\Omega}} \Big|_P = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K
$$

$$
+ \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_l
$$

$$
-F_L \cos^2 \theta_K \cos 2\theta_l + S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi
$$

$$
+ S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi
$$

$$
+ \frac{4}{3} A_{FB} \sin^2 \theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi
$$

$$
+ S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \Big]
$$

$$
\frac{1}{d(\Gamma+\bar{\Gamma})/dq^2} \frac{d^4(\Gamma+\bar{\Gamma})}{dq^2 d\vec{\Omega}}\Big|_{S+P} = (1-F_S) \frac{1}{d(\Gamma+\bar{\Gamma})/dq^2} \frac{d^4(\Gamma+\bar{\Gamma})}{dq^2 d\vec{\Omega}}\Big|_{P} \n+ \frac{3}{16\pi}F_S \sin^2\theta_l \n+ \frac{9}{32\pi}(S_{11} + S_{13} \cos 2\theta_l) \cos\theta_K \n+ \frac{9}{32\pi}(S_{14} \sin 2\theta_l + S_{15} \sin\theta_l) \sin\theta_K \cos\phi \n+ \frac{9}{32\pi}(S_{16} \sin\theta_l + S_{17} \sin 2\theta_l) \sin\theta_K \sin\phi,
$$

- Modified angular distribution to account for S-wave contamination in P-wave mode of $K^{*0} \to K^+\pi^-$ decay.
- Then… parametrize in terms of the (independent) form factors!

Interpretation of Result using EFT

- Encode the FCNC couplings using EFT in electroweak scale (Weak Effective Theory - WET):
	- $\mathcal{L} = \mathcal{L}_{\text{QED}} + \mathcal{L}_{\text{QCD}} + \mathcal{L}_{\text{WET}}$. $\mathcal{L}_{\text{WET}} = \sum \mathcal{C}_a \, \mathcal{O}_a + h.c. + \dots$
- rost important couplings for the process...
	- c_7 , c_9 , c_{10} encodes the photonic, vector and axial-vector coupling...

$$
\begin{split} \mathcal{O}_{7^{(')}} = \frac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e}{16 \pi^2} m_b \left(\bar{s} \, \sigma^{\mu \nu} P_{R(L)} b \right) F_{\mu \nu} \\ \mathcal{O}_{9^{(')}} = \frac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16 \pi^2} \left(\bar{s} \, \gamma_\mu P_{L(R)} b \right) \left(\overline{\mu} \gamma^\mu \mu \right) \\ \mathcal{O}_{10^{(')}} = \frac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16 \pi^2} \left(\bar{s} \, \gamma_\mu P_{L(R)} b \right) \left(\overline{\mu} \gamma^\mu \gamma_5 \mu \right) \end{split}
$$

$$
R = \mathcal{N} \left\{ \left[(\mathcal{C}_9 \pm \mathcal{C}_9') \mp (\mathcal{C}_{10} \pm \mathcal{C}_{10}') \right] \mathcal{F}_{\lambda}(q^2, k^2) + \frac{2m_b M_B}{q^2} \left[(\mathcal{C}_7 \pm \mathcal{C}_7') \mathcal{F}_{\lambda}^T(q^2, k^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2, k^2) \right] \right\}
$$

More explicitly...

- Expanding the previous amplitude we see the amplitudes depend on…
	- \circ The effective **Wilson Coefficients** c_7 (photon), c_9 (vector), c_{10} (axial-vector)
	- \circ **Form Factors:** $V(q^2)$ **,** $T_{1,\, 2,\, 3}(q^2)$ **,** $A_{1,\, 2}(q^2)$

$$
A_{\perp}^{L(R)} = N\sqrt{2\lambda} \Biggl\{ \bigl[(C_9^{\text{eff}} + C_9^{\text{eff}}) \mp (C_{10}^{\text{eff}} + C_{10}^{\text{eff}}) \bigr] \frac{V(q^2)}{m_B + m_{K^*}} + \frac{2m_b}{q^2} (C_7^{\text{eff}} + C_7^{\text{eff}}) T_1(q^2) \Biggr\} A_{\parallel}^{L(R)} = -N\sqrt{2} (m_B^2 - m_{K^*}^2) \Biggl\{ \bigl[(C_9^{\text{eff}} - C_9^{\text{eff}}) \mp (C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \bigr] \frac{A_1(q^2)}{m_B - m_{K^*}} + \frac{2m_b}{q^2} (C_7^{\text{eff}} - C_7^{\text{eff}}) T_2(q^2) \Biggr\} A_0^{L(R)} = -\frac{N}{2m_{K^*}\sqrt{q^2}} \Biggl\{ \bigl[(C_9^{\text{eff}} - C_9^{\text{eff}}) \mp (C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \bigr] \bigl[(m_B^2 - m_{K^*}^2 - q^2) (m_B + m_{K^*}) A_1(q^2) - \lambda \frac{A_2(q^2)}{m_B + m_{K^*}} \bigr] + 2m_b (C_7^{\text{eff}} - C_7^{\text{eff}}) \bigl[(m_B^2 + 3m_{K^*} - q^2) T_2(q^2) - \frac{\lambda}{m_B^2 - m_{K^*}^2} T_3(q^2) \bigr] \Biggr\}
$$

CP-averaged angular distribution

$$
\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^4(\Gamma + \bar{\Gamma})}{dq^2 d\vec{\Omega}} \Big|_{P} = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_{\rm L}) \sin^2 \theta_K + F_{\rm L} \cos^2 \theta_K
$$

$$
+ \frac{1}{4} (1 - F_{\rm L}) \sin^2 \theta_K \cos 2\theta_l
$$

$$
-F_{\rm L} \cos^2 \theta_K \cos 2\theta_l + S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi
$$

$$
+ S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi
$$

$$
+ \frac{4}{3} A_{\rm FB} \sin^2 \theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi
$$

$$
+ S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \Big]
$$

Uncertainties: Pseudo Experiment

- Use of pseudo experiments to validate angular analysis methods
- Generate synthetic data sets (pseudo-data) based on actual data.
- Analyze pseudo-data to extract observables.
- Assess the spread in results to estimate uncertainties.

Reconstruction Charged particle

Detector & Reconstruction

