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Goals and motivation

To calculate the metric of a nonrotating black hole
moving in an external universe and subjected to a tidal
gravitational field.

This is motivated by recent attempts to use post-Newtonian
theory to construct astrophysically realistic initial data sets
for the numerical evolution of a binary black-hole spacetime.
[Tichy et al, gr-qc/0207011]

The PN two-body metric fails near each black hole, but it
can be matched to a perturbed Schwarzschild solution.
[Alvi, gr-qc/9912113; Yunes et al, gr-qc/0503011].
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Goals and motivation
Black-hole zone: r � b
Post-Newtonian zone: r � M
Matching zone: M � r � b
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Goals and motivation

To calculate (and better understand) the tidal heating of
a black hole.

In the context of a binary system, the increase of the
black-hole mass by tidal heating impacts the energy
balance between radiated energy and orbital energy.

This affects the phasing of the gravitational waves, and has
measurable consequences.
[Poisson and Sasaki (1995); Tagoshi et al (1997); Alvi, gr-qc/0107080;

Poisson, gr-qc/0407050]

Capra 8, July 11, 2005 – p.5/23



Goals and motivation

To define and calculate the induced quadrupole
moment of a tidally distorted black hole.

The hole’s acquired internal structure will prevent it from
moving on a geodesic of the background spacetime
(excluding self-force effects).

How large is this effect?
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Problem and strategy

We want to calculate the metric of a tidally distorted,
nonrotating black hole by integrating the vacuum equations
of black-hole perturbation theory.

We want to express the metric in geometrically meaningful
coordinates that penetrate the event horizon.

We want to parameterize the perturbation with tidal fields
defined in terms of the spacetime’s Weyl tensor and its
derivatives in the asymptotic region r � M .
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Problem and strategy

We assume that the black hole is well isolated, so that

M � R ≡ local radius of curvature

We shall first take M = 0 and construct the coordinates in a
neighbourhood of a geodesic γ in a vacuum region of an
arbitrary spacetime.

We will later place a nonrotating black hole on this world
line.
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Light-cone coordinates

r

v = const
z(v)

(θ,φ) =

γ

const
x

zµ(τ) = description of geodesic
v = const on past light cone of z(v)

(θ, φ) = const on each generator
−r = affine parameter on generator

Ωa := (sin θ cos φ, sin θ sin φ, cos θ)

r := −uα(v)σα(x, z(v))
σ(x, z(v)) = 0
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Tidal fields

Let
(uα, eα

a ) (a = 1, 2, 3)

be a tetrad of parallel-transported vectors on γ.

Let
Eab(v) := Cαµβνe

α
auµeβ

b uν = O(R−2)

be frame components of the Weyl tensor evaluated on γ.
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Tidal fields

Similarly, let

Ėab(v) := Cαµβν;λeα
auµeβ

b uνuλ = O(R−3)

and

Eabc(v) :=
1

3
(Cαµβν;γ + Cγµαν;β + Cβµγν;α)eα

auµeβ
b uνeγ

c

= O(R−3)
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Tidal fields

The frame tensors Eab and Eabc are symmetric and tracefree.

They give rise to quadrupolar and octupolar tidal potentials,

E
q(v, θ, φ) := EabΩ

aΩb = (E11 + E22)Y
2,0 + · · ·

and

E
o(v, θ, φ) := EabcΩ

aΩbΩc = (E113 + E223)Y
3,0 + · · ·

These appear in the expression for the metric.

The magnetic components of the Weyl tensor also appear
(but this is not shown in this talk.)
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Metric near a world line

The metric of an arbitrary spacetime can be expressed, in a
neighbourhood of a geodesic γ, as an expansion in powers
of r/R.

In the light-cone coordinates,

gvv = −1 − r2
E

q +
1

3
r3
Ė

q

−
1

3
r3
E

o + O(r4/R4)
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Metric near a black hole

Now place a nonrotating black hole of mass M on the
geodesic γ and calculate its metric.

The geometrical meaning of the light-cone coordinates
shall be preserved.

In the limit R → ∞ the black hole is fully isolated and its
metric is

gvv = −f, f = 1 −
2M

r

In the limit M → 0 the metric is given by our previous result.
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Metric near a black hole

The “interpolating” metric must be of the form

gvv = −f − r2e1(M/r)E q +
1

3
r3e2(M/r)Ė q

−
1

3
r3e3(M/r)E o

+ O(r4/R4)

which reproduces the correct limiting expressions when
M → 0 or R → ∞.

The radial functions are obtained by integrating the
equations of black-hole perturbation theory.

They approach 1 as M/r → 0.

Capra 8, July 11, 2005 – p.15/23



Metric near a black hole
We find

e1 = f2

e2 = f
[

1 +
1

2

M

r

(

5 + 12 ln
r

2M

)

− 3
M2

r2

(

9 + 4 ln
r

2M

)

+ 14
M3

r3
+ 12

M4

r4

]

e3 = f2
(

1 −
M

r

)

The metric is parameterized by the tidal fields Eab(v) and
Eabc(v), which represent components of the Weyl tensor in
the hole’s local asymptotic rest frame.

These can be determined, for example, by matching the
metric to the PN two-body metric.
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Perturbed event horizon
The coordinate system is such that the coordinate
description of the perturbed event horizon is preserved,

r = 2M
[

1 + O(M4/R4)
]

But the intrinsic geometry of the horizon is nonspherical.

For example, the surface gravity is given by

κ =
1

4M

[

1 +
16

3
M3

Ėab(v)ΩaΩb + · · ·

]

At this level of approximation the event horizon is an
apparent horizon:

Θ = O(M4/R5)
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Tidal heating
The slow growth of the event horizon is not revealed by a
direct examination of the horizon’s perturbed geometry.

It can, however, be calculated by applying the
Hawking-Hartle formula, which gives

dM

dv
=

16

45
M6

Ėab(v)Ėab(v) + higher-order terms

For a circular orbit of radius b around an external body of
mass Mext, this becomes

dM

dv
'

32

5

M6M2
ext

(M + Mext)8
V 18

where V =
√

(M + Mext)/b is the orbital velocity.
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Induced quadrupole moment

What is the tidally-induced quadrupole moment of a black
hole?

On dimensional grounds we would expect

Qab ∝ M5
Eab

and we would expect to see a term QabΩ
aΩb/r3 in the

metric.

Surprisingly, no such term appears:

gvv = −1 +
2M

r
− (r2

− 4Mr + 4M2)EabΩ
aΩb + · · ·
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Induced quadrupole moment

To define Qab operationally we might use the general
expression for tidal work in Newtonian or relativistic gravity,
[Purdue, gr-qc/9901086; Favata, gr-qc/0008061; Booth and Creighton, gr-qc/0003038]

dW

dv
= −

1

2
Q̇abE

ab =
1

2
QabĖ

ab +
d

dv

(

−
1

2
QabE

ab
)

Suppose

Qab = λM5
Eab +

32

45
M6

Ėab + · · · (λ unknown)

Then

dW

dv
=

16

45
ĖabĖ

ab +
d

dv

(λ

4
M5

EabE
ab

−
1

2
QabE

ab
)

+ · · ·
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Induced quadrupole moment

This calculation does not reveal the leading contribution to
the induced quadrupole moment.

The leading term, λM5Eab, is gauge dependent and
ambiguous.

The same conclusion was reached by Fang and Lovelace
(gr-qc/0505156), based on a different operational definition
provided by

Ṗ a = −
1

2
E

a
bcQ

bc

The correction term, 32
45

M6Ėab, is both gauge invariant and
unambiguous.
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Newtonian fluid sphere
There is an analogous situation in Newtonian theory, in the
case of a viscous, incompressible fluid sphere, for which

Qab(t) = −
1

2
R5

Eab(t − τ), τ =
19

2

R

M
ν

R = sphere’s radius ν = kinematical viscosity

Then

dW

dt
=

1

2
QabĖ

ab +
d

dt

(

· · ·

)

= −
1

4
R5

Eab(t − τ)Ėab(t) +
d

dt

(

· · ·

)

'
1

4
R5τ ĖabĖ

ab +
d

dt

(

· · ·

)

The black hole therefore behaves as a viscous body with
viscosity ν ∼ M . [Hartle, 1974]
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Conclusion
The metric of a tidally distorted, nonrotating black hole
is expressed in light-cone coordinates (v, r, θ, φ), as an
expansion in powers of r/R.

The coordinates are geometrically meaningful and
convenient to work with — the perturbed event horizon
is described by r = 2M .

The metric is usefully parameterized by tidal fields
Eab(v) and Eabc(v), which represent components of the
Weyl tensor and its covariant derivative in the hole’s
local asymptotic rest frame.

The tidally-induced quadrupole moment of a black hole
is intrinsically ambiguous at leading order.

But its correction term can be operationally defined in
terms of the tidal heating of the event horizon.
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