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• The Lorenz gauge versus the “true harmonic” gauge.

• Gauge invariant quantities for describing “circular” geodesics in gSchw
ab +hab.

• Actual results for gravitational self-force effects on circular orbits in the
Schwarzschild geometry.

• A scheme for doing second order metric perturbations with a point mass (small,
black hole) source.
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The true harmonic gauge versus the Lorenz gauge

With the Schwarzschild geometry there are four different scalar fields

T = t, X =(rSchw−m)sinθ cosφ , Y =(rSchw−m)sinθ sinφ , Z =(rSchw−m)cosθ ,

for which
∇

a
∇aT = ∇

a
∇aX = ∇

a
∇aY = ∇

a
∇aZ = 0.

These four scalar fields may be used for harmonic coordinates, but for the time
being we continue to use Schwarzschild coordinates. We consider an arbitrary
perturbation of the metric and seek a gauge transformation which results in these
same scalar fields being harmonic functions in the perturbed metric gab +hab.

This is surprisingly simple to do. The condition that a scalar field X be harmonic

in gab +hab is that ∇a
(g+h)∇

(g+h)
a X = 0. Three other, similar equations for T , Y and

Z should also hold. Together, these give us the four gauge conditions for the
true-harmonic gauge.
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With no details being given, we define h̄ab = hab− 1
2gabh, where h = gabhab.

The true-harmonic gauge condition for the perturbed geometry is then

∇a(h̄ab
∇bX) = 0.

Note that the gauge condition is covariant and distinct from what is usually
described as the Lorenz gauge condition, ∇ah̄ab = 0.

Under a gauge transformation,

h̄ab
new = h̄ab

old−∇
a
ξ

b−∇
b
ξ

a +gab
∇

c
ξc.

Thus, with an initial metric perturbation hold
ab , the gauge vector ξ a to transform to

the true-harmonic gauge must satisfy

∇a(h̄ab
old∇bX) =

(
∇a∇

a
ξ

b +Rb
cξ

c)
∇bX +2(∇a

ξ
b)∇a∇bX ,

as well as three other similar equations for T , Y , and Z.
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Gauge Invariance

“The perturbation in some quantity is the difference between the value it has at a
point in the physical (perturbed) spacetime and the value at the corresponding
point in the background spacetime. A gauge transformation induces a coordinate
transformation in the physical spacetime, but it also changes the point in the
background spacetime corresponding to a given point in the physical spacetime.
Thus, even if a quantity is a scalar under coordinate transformations, the value of
the perturbation in the quantity will not be invariant under gauge transformations
if the quantity is nonzero and position dependent in the background spacetime.”
(Bardeen 1980)

A gauge transformation is a small change in coordinates, xa
new = xa +ξ a, with

ξ a = O(µ) which changes the metric perturbation, hnew
ab = hab−2∇(aξb) +O(µ2).

But, for an arbitrary ξ a, the tensor 2∇(aξb) is explicitly a homogeneous solution of
the perturbed Einstein equations, and the perturbed Einstein tensor is therefore
invariant under such a gauge transformation.
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Gauge invariant quantities for “circular” geodesics in gSchw
ab +hR

ab

Self-force analysis implies that a point mass µ moves along a geodesic of the
perturbed metric gSchw

ab +hab, where hab ≡ hR
ab is C 1. This geodesic equation is

dua

ds
=

1
2

ubuc ∂

∂xa(gbc +hbc)

Let R(s) be r for the particle, and define

ut = −E, uφ = J and ur = Ṙ,

ua =
(

E +ubhtb

1−2M/r
, Ṙ,0,

J−ubhφb

r2

)
,

E and J are similar to the particle’s energy and angular momentum per unit rest
mass.
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The components of the geodesic equation

dE
ds

= −1
2

uaub∂hab

∂ t
dJ
ds

=
1
2

uaub∂hab

∂φ

d
ds

( rṘ
r−2M

+uahar

)
=

1
2

uaub ∂

∂ r
(gab +hab)

Assume that R̈ = O(h2) and that Ṙ = O(h) —this is consistent with quasi-circular
evolution.
The normalization of ua is a first integral of the geodesic equation,

1 =
E2

1−2M/r
− J2

r2 +uaubhab.
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Symmetries for “circular” orbits

Neither ∂/∂ t nor ∂/∂φ is a Killing vector of gab +hab, but the combination,
ka ∂

∂xa = ∂/∂ t +Ω∂/∂φ is a Killing vector, Lkhab = 0, and ua is tangent to a
trajectory of ka. Thus, at a “circular” orbit ua∂ahbc = 0 in Schwarzschild
coordinates.

The “circular” orbits of the perturbed geometry are obtained from the
r-component of the geodesic equation, and the normalization condition, and the
facts that

Ė ∼ O(h) J̇ ∼ O(h)

A gauge transformation

Only a gauge transformation in the radial coordinate rnew = rold +ξ r induces a
change in

∆(uaub
∂rhab)µ = − 6M

r2(r−3M)
ξ

r

evaluated at the particle. Also, uaubhab|µ is invariant under any gauge
transformation. These facts imply that the quantities below are gauge invariant.
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Gauge invariant quantities

Consequences of the geodesic equation are

(ut)2 =
(dT

ds

)2
=

(E +ubhtb)2

(1−2M/r)2

=
r

r−3M

(
1+uaubhab−

r
2

uaub
∂rhab

)

(uφ)2 =
(dΦ

ds

)2
=

1
r4(J−ubhφb)2

=
r−2M

r(r−3M)

[
M(1+uaubhab)

r(r−2M)
− 1

2
ruaub

∂rhab

]

Ω
2 =

(uφ

ut

)2
=

M
r3 −

r−3M
2r2 uaub

∂rhab

dE
dt

= −1
2

√
1−3M/r uaub

∂thab
dJ
dt

=
1
2

√
1−3M/r uaub

∂φhab
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Consider

(E −ΩJ)
dT
ds

= E
dT
ds

− J
dΦ

ds

=
E(E +ubhtb)

1−2M/r
− J

r2(J−ubhφb)

=
E2

1−2M/r
− J

r2 +
Eubhtb

1−2M/r
+

J
r2ubhφb

= 1−uaubhab +uaubhab = 1

Therefore
kaua = E −ΩJ = (dT/ds)−1 = (ut)−1

is also gauge invariant.
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Physical interpretation of the gauge invariant ut

Let a light source be near the small mass µ. Let the tangent vector to an affinely
parameterized null geodesic of a photon from this light source be νa. The energy
Eem of the photon, as emitted near µ, is proportional to uaνa, so the ratio of the
energies as measured by an observer and as emitted is

Eob

Eem
=

uaνa|ob

uaνa|em

With ka a Killing vector field, kaνa is constant along the path of the photon. At
emission, ua

em ∝ ka so that ua
em = utka|em. Let the photon be observed at a large

distance away from the black hole along the z-axis.

det, Capra VIII, Rutherford Appleton Laboratory, Oxford, 2005 9



It follows that

Eob

Eem
=

uaνa|ob

uaνa|em
, with ut

∞ = 1 this becomes

=
ν∞

t

ut(kaνa)em
=

ν∞
t

ut(kaνa)∞
, because kaua = constant along the geodesic,

=
ν∞

t

ut(ν∞
t +Ων∞

φ
)

=
1
ut −

Ων∞
φ

ut(ν∞
t +Ων∞

φ
)

=
1
ut , because ν

∞

φ = 0 at a large distance along the z-axis.

Thus, the gauge invariant ut = 1/(E −ΩJ) gives the redshift of a photon, emitted
from µ, when the photon is observed on the z-axis at a large distance.
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A surprising (to me) fact

• An arbitrary metric perturbation of a spherically symmetric background
spacetime retains some residual spherical symmetry:

• The perturbed spacetime may be foliated by a unique family {Σ} of
two-spheres, which are individually spherically symmetric, even while the
spacetime as a whole is not. There is a gauge with hθθ = hθφ = hφφ = 0.

• The existence of the two-spheres in the perturbed geometry, permits the
geometrical definition of a scalar field R from the area of each Σ.

• The gauge where rschw = R is called the Easy Gauge. The metric perturbations
in the EZ gauge may be interpreted as being “gauge invariant” in the same
manner that Moncrief showed that the Regge-Wheeler-gauge metric perturbations
could be described as being “gauge invariant.” The relationship between the EZ
gauge variables and the Regge-Wheeler-Moncrief variables is not just algebraic,
but also involves differentiation. As a result, the form of the perturbed Einstein
equations in the EZ gauge differs from that in the Regge-Wheeler gauge. There
are geometrical interpretations of all of the EZ gauge-invariant scalars in terms of
the lapse and shift using a foliation of the 3-geometry in terms of {Σ}.
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Definitions of two “radial R” quantities

The orbital frequency of a circular, Newtonian binary of masses M and µ is

Ω
2 =

M + µ

r3

where r is the separation between M and µ. For a general-relativistic, extreme
mass ratio binary we define RΩ by

Ω
2 =

M + µ

R3
Ω

defines RΩ.

In a circular Newtonian binary, the radius of the orbit of µ is

distance to center of mass = separation/(1+ µ/M).

In the extreme mass ratio limit, this becomes

distance to center of mass = RΩ(1−µ/M).
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An actual well-defined consequence of the gravitational
self-force

10 100
RΩ ⁄ M

0.0001

0.001

0.01

0.1

∆u
T

⁄u
T

×M
⁄µ

• The redshift of a photon from µ is

Eob

Eem
=

1
ut

when observed at a large distance along the z-axis.
• I have not yet calculated this redshift in the post-Newtonian approximation.
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A second well-defined consequence of the gravitational
self-force

10 100
RΩ ⁄ M

1

1.05

1.1

1.15

1.2

1.25

1.3

−
(R

E
Z

−R
Ω

)⁄
R

Ω
×

M
⁄µ

• At large RΩ, the areal radius of the geometrical two-spheres

REZ ≈ RΩ(1−µ/M) = Newtonian distance to the center of mass

• REZ does not (yet?) appear to be physically observable.
• I have not yet calculated REZ in the post-Newtonian approximation.
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Second order perturbation theory with a point mass, schematically

Define the parts of the Einstein tensor of various orders in h by

G(g+h) = G(1)(g,h)+G(2)(g,h)+G(3)(g,h)+ . . .

G(1)(g,h) looks like a wave operator on h; G(2)(g,h) looks like “∇h∇h”or “h∇∇h”.

At second order solve

G(1)(g,h)+G(2)(g,h) = 8πT or G(1)(g,hR +hS)+G(2)(g,hR +hS) = 8πT

by using

G(1)(g,hR) = −G(2)(g,hR)− [G(1)(g+hR,hS)−G(2)(g,hS)+8πT ]

If we know hS well enough then

[G(1)(g+hR,hS)−G(2)(g,hS)+8πT ] = O(µr/R4) = C 0

• The numerical solution for hR will be C 2

• Except for being continuous but non-differentiable at the point mass, the source
is relatively smooth.
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g ∼

η & 0 & 2H ′ & 3H ′ & 4H ′ & · · · = g0 +hR

µ/r & µ/R & µr/R2 & µr2/R3 & µr3/R4 & · · · = hµ

S

µ2/r2 & µ2/rR & µ2/R2 & µ2r/R3 & µ2r2/R4 & · · · = hµ2

S

µ3/r3 & µ3/r2R & µ3/rR2 & µ3/R3 & µ3r/R4 & · · · = hµ3

S
... ... ... ... ...

gSchw 0 2h′ 3h′ 4h′

(1)

• The point mass moves along a geodesic of g+hR

• At higher order, as long as the motion is geodesic in g+hR, the formulation of
higher order perturbation theory is relatively straightforward.
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Conclusions

• Other conservative self-force effects will be studied for slightly non-circular
orbits of Schwarzschild. These include the self-force effects on the precession of
the perihelion of an orbit, and on the orbital frequency of the innermost stable
circular orbit.

• There seems to be no fundamental difficulty in doing second order perturbation
theory.

• Second order calculations will certainly be able to provide improved wave-forms
for LISA and also be able to test convergence of the post-Newtonian
approximation.
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