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Motivation

“Mapping of Kerr geometry, holiodesy, etc” : central points in every single review talk on
LISA

What does this actually mean, and how can we flesh out a “spacetime-mapping”
program for LISA ?

EMRIs: a unique probe for such an experiment. Observations by LISA could:

(i) Provide evidence in favour of GR’s ‘no-hair’ theorem (uniqueness of the Kerr
metric)

(ii) Reveal the true identity of the ‘dark objects’ in galactic nuclei (Kerr holes vs
Boson stars, Gravastars ....)

LISA data analysis plans should be prepared for the possibility of non-Kerr EMRIs

Capra VIII, July 2005 – p.3/19



Non-Kerr metrics

The metric exterior to any stationary and axisymmetric ‘source’ can be written in
terms of mass and current multipole moments M`, S`. Symbolically:

g
axi/stat
ab ∼

∞
X

n=0

M2n

r2n+1
P1(θ),

∞
X

n=1

S2n−1

r2n+1
P2(θ)

Unless information on the nature of the source is provided, M`, S` are free
parameters. For a Kerr BH, the multipole moments are locked to the lowest two,
mass M ≡M0 and spin J ≡ S1 = aM :

M` + iS` = M(ia)`, ` = 0, 1, 2, 3, ...

‘Mapping’ spacetimes with LISA means to construct EMRIs waveforms which will
take into account a non-Kerr multipolar structure.

Previous work: F. Ryan (late 90s) provided basic estimates on the precision with
which LISA will be able to extract the first few moments. Measuring just the first
three moments M,J and M2 is sufficient for identifying a non-Kerr object.
Measuring higher moments could lead to a full identification !
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Non-Kerr EMRI: not a milk run !

Despite the elegance and generality of the gaxi/stat
ab metric, there is a major

problem: the spacetime is no longer Petrov-type D (unlike Kerr).

As a consequence, all the ‘miracles’ of the Kerr spacetime are lost:
(i) The Hamilton-Jacobi equation for point-particle motion is separable with respect
to t and φ coordinates only ⇒ E,Lz are still there, but the “third” integral of motion
(Carter constant in Kerr) is lost. ⇒ complicates orbital motion, possibility of chaotic behaviour
...
(ii) Cannot formulate a Teukolsky-like wave equation since the NP perturbative
equations for the Weyl ψ scalars do not decouple anymore.

As an alternative one would need to solve 10 PDEs for direct metric perturbations.
In the meantime a cheap approximate solution is to construct ‘kludge’ waveforms.

The expansion in multipole moments is also an expansion in 1/r i.e. a weak-field
expansion. To probe strong-field orbits, we need to include several multipoles.

In addition taking the Kerr limit M`, S` →MKerr
` , SKerr

` of gaxi/stat
ab does not lead

to the Kerr metric in familiar Boyer-Lindquist coordinates.
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A less detailed ‘map’: the quasi-Kerr metric

Basic idea: as we are almost certain for the existence of Kerr BHs then the
simplest approach to a non-Kerr program would be to assume a slight deviation
from the Kerr metric. In other words, a ‘quasi-Kerr’ metric would have:

M,J, M` = MKerr
` + δM`, S` = SKerr

` + δS`

We only consider the deviation in the quadrupole moment:

δM2 = −εM3, δM` = δS` = 0 for ` ≥ 3

Previous work: Collins & Hughes (2004) built a ‘bumpy’ Schwarzschild metric by
adding a small amount of quadrupole moment in the form of (i) a pair of masses at
the hole’s north and south poles or (ii) a ring of matter on the equator. Then, they
studied equatorial motion in this metric and computed periastron shift:

∆φ ≈ −3πµb2

Mp2
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Building a ‘quasi-Kerr’ metric (I)

A quasi-Kerr metric would look like:

gqK
ab = gKerr

ab + ε hab(r, θ) + O(δM`≥4, δS`≥3)

We would also like to recover the Boyer-Lindquist Kerr metric at the ε→ 0 limit ⇒
enjoy separability of particle/wave equations.

The objective is to find hab(r, θ). This can be easily achieved by using the exterior
Hartle-Thorne (HT) metric:
This metric describes the spacetime outside any axisymmetric-stationary body up
to O(J2) accuracy. Hence, this metric is fully accurate up to the first three
moments M,J,Q.
For the choice Q = QKerr = −a2M it reduces to the O(a2) Kerr metric.

Write: Q = QKerr − εM3, where ε is taken as the small parameter.

Split the HT metric in the following manner:

gHT
ab = gHT,a2Kerr

ab + εhHT
ab + O(J3+)
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Building a ‘quasi-Kerr’ metric (II)

Key point: original H-T coordinates lead to nonseparable particle/wave equations
even at the Kerr limit ⇒ shift to familiar Boyer-Lindquist coordinates.

Then the resulting hHT
ab = hab

The final form of our quasi-Kerr metric is:

gqK
ab = gKerr

ab + ε hab + O(δM`≥4, δS`≥3)

with

htt = [ f3(r) + f4(r) cos2 θ]/(1 − 2M/r), hrr = (1 − 2M/r)[ f3(r) + f4(r) cos2 θ]

hθθ = −[h3(r) + h4(r) cos2 θ]/r2, hφφ = −[h3(r) + h4(r) cos2 θ]/(r2 sin2 θ)

htφ = 0

This metric is not a 1/r expansion ⇒ suitable for strong field computations.

Strictly speaking, gqK
ab is not type-D , but still close to be !
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Hamilton-Jacobi theory in the Kerr field

Point particle Hamiltonian: H0(xa, pb) = 1
2
gµνpµ pν with pa = dxa/dλ. The H-J

equation is:
1

2
gab ∂S

∂xa

∂S

∂xb
+
∂S

∂λ
= 0

Kerr metric in BL coordinates: H-J equation is fully separable
⇒ S = 1

2
µ2 λ− E t+ Lz φ+ Sr(r) + Sθ(θ)

Equations of motion:

pa = gab ∂S

∂xb
⇒

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

pt = −gtt E + gtφ Lz = Vt

pr = ±grr ∆−1
√
R = ±Σ−1

√
R

pθ = ± gθθ
√

Θ = ±Σ−1
√

Θ

pφ = gφφ Lz −E gtφ = Vφ

Separation constants: αk = {−µ2/2, E,Q,Lz}.
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Action-Angle variables

Canonical transformation {xa, pb} → {βa, γk} where γk = {pt, Ji} = constant

For the actions we have:

Ja =

I

pa dq
a ⇒

8

>

>

>

>

>

<

>

>

>

>

>

:

Jr = 2
R ra

rp
dr

√
R/∆

Jθ = 2
R θs

θn
dθ

√
Θ

Jφ = 2π Lz

And for the (constant) conjugate coordinates we get,

βa =
∂S

∂γa
⇒ βa + νa λ =

∂W

∂γa
=
∂W

∂αk

∂αk

∂γa
≡ wa, W (xa, αk) ≡ S − λ/2

These are the equations of motion in the integrated form. Differentiating these
takes us back to the previous form of equations of motion.

Orbital frequencies:
MΩi = νi/νt, i = {r, θ, φ}
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Hamilton-Jacobi theory in the quasi-Kerr metric

Solve the H-J equation by expanding :

Sr,θ = SKerr
r,θ + ε S

(1)
r,θ + O(ε2)

We get:

2 r(r − 2M)
dSKerr

r

dr

dS
(1)
r

dr
+ f3 r (r − 2M)

„

dSKerr
r

dr

«2

+
E2 r3f3

r − 2M
−K h3 =

−2
dSKerr

θ

dθ

dS
(1)
θ

dθ
+ cos2 θ Z(r)

⇒ non-separable at O(ε).

For equatorial motion, H-J equation is trivially separable and this is the case we
study first.
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Equatorial motion

Equatorial equations:

(ur)2 =

„

dr

dτ

«2

= (E2 − 1) +
2M

r
− [L2 + a2(1 −E2)]

1

r2
+

2M

r3
(L− aE)2

−ε
„

1 − 2M

r

« »

(f3 − h3)
L2

r2
+ f3

–

uφ =
dφ

dτ
=

1

∆

»

2M

r
(aE − L) + L

–

− ε
h3

r2

ut =
dt

dτ
=

1

∆

»

E(r2 + a2) +
2Ma

r
(Ea− L)

–

− ε

„

1 − 2M

r

«−1

f3E

Parameterise the orbit in the usual Keplerian manner:

r(χ) =
p

1 + e cosχ
, χ = 0 → 2π
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Results: periastron advance
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Results: ‘kludge’ waveforms
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Results: overlaps
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Prelude to the ‘confusion problem’

We have compared Kerr vs quasi-Kerr waveforms for the same orbital parameters
{p, e} and spin a/M . The resulting overlaps are low (∼ 50 − 70%) after a time
interval TRR at which radiation reaction begins to become important.

Emerging question: is it possible to construct a Kerr waveform with a different set of
parameters {a/M, p, e} that would match the original quasi-Kerr waveform (overlap
& 95%) ?

If yes, then LISA could confuse a true non-Kerr object with a Kerr BH !

One suggestion is to compare waveforms that correspond to the same orbital
frequencies Ωr,Ωφ but differ by δp, δe ∼ O(ε).
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Generic orbits

Using the fact that the quasi-Kerr H-J equation is only O(ε) away from being
separable, we can employ canonical perturbation theory and arrive to approximate
equations of motion.

Treat perturbatively the non-Kerr piece of the metric:

H =
1

2
gab
Kerr pa pb +

1

2
ε hab pa pb = HKerr + εH1

Canonical transformation : {xa, pb} → {βa, γb} and

〈dβ
a

dλ
〉 = ε 〈∂H1

∂γa
〉, 〈dγ

a

dλ
〉 = −ε ∂〈H1〉

∂βa

Use Kerr geodesic motion for RHS derivatives.

Equations of motion look like: βa + [νa + 〈βa〉]λ = ∂W
∂γa

= ∂W
∂αk

∂αk

∂γa

The non-Kerr character result in frequency-shifts, but there are still three integrals
of motion !

Capra VIII, July 2005 – p.17/19



Conclusions ...

Our quasi-Kerr formalism appears as a practical tool for carrying out a
spacetime-mapping program for LISA.

For a modest quadrupole deviation, initially identical orbits ‘phase-out’ after few
hundreds cycles.

Waveform calculations (presently equatorial orbits) suggest that a Kerr waveform
template with identical {a/M, p, e} could become useless at a time span ∼ TRR.

Possible to write approximate equations of motion for generic orbits without
sacrificing the third constant.
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and future challenges ...

The ultimate goal for any non-Kerr program is the computation of rigorous EMRI
waveforms.

The question that needs to be addressed is whether the quasi-Kerr framework will
allow an approximate ‘Teukolsky-like’ formalism.
If not, then there is no much choice than solving (in the time-domain as a 2+1
system) the ‘box’ equations:

� h̄ab + 2Racbd h̄
cd = −16π Tab, h̄ab

;b = 0

The confusion problem: do we have to worry ?

Another interesting application of our formalism would be to estimate the change in
QNMs frequencies induced by the deviation from the exact Kerr metric. This could
constitute an independent check on the BH identity of the central massive object.
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