

Forward physics at the LHC: pp to AA

Peter Jacobs Lawrence Berkeley National Laboratory

WE-Heraeus-Seminar: Forward Physics and QCD at the LHC and EIC Physikzentrum Bad Honnef Oct 23-27 2023

Forward physics at the LHC

Forward physics at the LHC: pp to AA Peter Jacobs

Lawrence Berkeley National Laboratory

The organizers asked me to talk about forward LHC physics "from pp to AA" but I only got as far as "from pp to p+Pb"

• this is already a broad topic, and I think is where the greatest interest lies in forward physics at the LHC

WE-Heraeus-Seminar: Forward Physics and QCD at the LHC and EIC Physikzentrum Bad Honnef Oct 23-27 2023

My goal for this talk: present key current and future LHC measurements which probe low-*x* physics

Very much a work in progress:

- challenging to formulate a comprehensive picture
- that's the focus of this workshop

QCD phenomena evolve only logarithmically in x and Q^2 \rightarrow experimental study of non-linear QCD evolution requires "logarithmically broad" coverage in (x,Q²)

Universality: correct theoretical description must self-consistently describe measurements of multiple observables at low (x,Q^2) in multiple collision systems

Multi-messenger program: combine measurements from e-A DIS and diffractive interactions at EIC, with forward p-A collisions at RHIC and LHC

10/23/23

LHC experimental coverage

Detectors sensitive to low-*x* observables

Complementary for low-*x* physics?

EIC Comprehensive Chromodynamics Experiment Collaboration Detector Proposal

Theoretical interpretability: dipole formalism

e+A DIS

- Interaction cross section
- Structure Functions F₂, F_L

$$\sigma_{\gamma^*T} = \int_0^1 dz \int d^2 \mathbf{r}_\perp |\psi^{\gamma^* \to q\bar{q}}(z, \mathbf{r}_\perp)|^2 \sigma_{\text{dipole}}(x, \mathbf{r}_\perp)$$
$$\sigma_{\text{dipole}}^{\text{LO}}(x, \mathbf{r}_\perp) = 2 \int d^2 \mathbf{b} T_{\text{LO}}(\mathbf{b} + \frac{\mathbf{r}_\perp}{2}, \mathbf{b} - \frac{\mathbf{r}_\perp}{2})$$

- γ+jet
- balanced di-jet,...

$$|M|_{\mathrm{LO}}^2 \propto \int \mathrm{d}^2 \mathbf{b} \, \mathrm{d}^2 \mathbf{r}_{\perp} e^{i\mathbf{p}_{\perp} \cdot \mathbf{r}} T_{\mathrm{LO}}(\mathbf{b} + \frac{\mathbf{r}_{\perp}}{2}, \mathbf{b} - \frac{\mathbf{r}_{\perp}}{2})$$

Multiple processes in e-A DIS and forward p-A are described theoretically by the same dipole-medium forward scattering amplitude $T_{LO} \rightarrow$ calculable beyond LO

Compare e-A DIS and forward p-A: universality

Dipoles in DIS:

Gribov, Sov. Phys. JETP 30 (1970) 709-717 Bjorken and Kogut, Phys. Rev. D 8 (1973) 1341 Frankfurt and Strikman, Phys. Rept. 160 (1988) 235 A. H. Mueller, Nucl. Phys. B 335 (1990) 115 Nikolaev and Zakharov, Z. Phys.C 49 (1991) 607 Dipoles in particle production:

Kopeliovich, Tarasov and Schafer, Phys. Rev. C 59 (1999) 1609 Gelis and Jalilian-Marian, Phys. Rev. D66 (2002) 014021 Kovchegov and A. H. Mueller, Nucl. Phys. B 529 (1998) 451 Kopeliovich, Raufeisen and Tarasov, Phys. Lett. B 503 (2001) 91

EIC Yellow Report: e+A DIS vs forward p+A

Nucl. Phys. A1026 (2022) 122447

Sect. 7.5.4: Low-x gluons and factorization in eA (ep) vs pA and AA

"...pA collisions can serve as a gateway to the EIC as far as saturation physics is concerned, and it also plays an important and complementary role in the study of these two fundamental gluon distributions (Weiszacker-Williams and Dipole)...The small-x factorization in DIS and pA collisions is expected to hold at higher order [1228], since the higher-order corrections do not generate genuine new correlators in the large Nc limit."

trupole	Inclusive DIS	SIDIS	DIS dijet	Inclusive in <i>p</i> +A	γ +jet in <i>p</i> +A	dijet in <i>p</i> +A
uadi rGww	—	_	+	—	_	+
xGpp	+	+	_	+	+	+

Table 7.2: The process dependence of two gluon distributions (i.e., the Weizsäcker-Williams (WW for short) and dipole (DP for short) distributions) in e+A(e+p) and p+Acollisions. Here the + and - signs indicate that the corresponding gluon distributions appear and do not appear in certain processes, respectively.

Forward pA probes unpolarized gluon TMD distributions

dip

LHC Run 2 results

CMS: forward di-jets in p+Pb

Phys. Rev. Lett. 121, 062002 (2018) arXiv:1805.04736

CMS: forward di-jets in p+Pb

Phys. Rev. Lett. 121, 062002 (2018) arXiv:1805.04736

DSSZ w/o gluon EMC effect: disfavored EPS09: EMC implementation compatible with data nCTEQ15: overshoots EMC and anti-shadowing effects EPPS16 similar to EPS09 w/ relaxed constraints; larger nPDF uncertainties 10/20120

ATLAS: forward di-jets in p+Pb

Events classified by Event Activity (EA) based on forward E_T ("centrality")

R_{CP}: ratio of yields for high/low EA

• scaled by Glauber-model factor assuming EA is geometric in origin

Striking scaling of high-EA yield suppression at large $\langle x_p \rangle$ Driven by color fluctuations in proton wavefunction \rightarrow new probe of color transparency

Forward physics at the LHC

arXiv:2309.00033

LHCb: D⁰ production in p+Pb

R_{pPb} - LHCb EPS09LO 1.5 EPS09NLO --- nCTEQ15 forward CGC 0.5 Forward 2 0 4 6 8 10 $p_{\rm T}$ [GeV/c]

Data uncertainties are smaller than theory uncertainties \rightarrow significant constraints on nPDFs

(Data from 2017, see next slides)

. .rward physics at the LHC

13

LHCb: π^0 production in p+Pb

PRL 131 (2023) 042302 arXiv:2204.10608

nCTEQ15, EPPS16: both incorporate LHCb D⁰ data

Forward (Pb low-x):

 good agreement w/ both linear QCD and CGC

Backward (Pb high-x):

- poorer agreement: additional nPDF constraints
- ch hadron yield enhanced vs π^0
- characteristic of heavy-ion collisions → radial flow? baryon enhancement?

nPDFs: impact of LHCb D⁰ data

PRL 131 (2023) 042302 arXiv:2204.10608

Compare nPDFs to LHCb π^0 data with and without reweighting by LHCb D⁰ data

Anti-shadowing (backward): minor improvement, still some tension

Low-x: marked reduction in systematic uncertainties

EPPS21

Eskola et al., EPJ C82 (2022) 5, 413 arXiv:2112.12462

Includes LHC p+Pb data:

5 TeV: CMS forward di-jet, LHCb D⁰ @ 5 TeV; 8 TeV: CMS W

ALICE: charm fragmentation in p+p

Measure all final states containing charm that have significant yield \rightarrow determine branching fractions f(c \rightarrow h_c)

LHCb: beauty fragmentation in pp

Ratio of beauty baryon/meson yield vs Event Activity

arXiv:2310.12278

(posted last Friday!)

Figure 3: Ratio of Λ_b^0 to B^0 cross-sections as a function of the total track multiplicity measured in the VELO detector (blue). The purple point indicates the value measured in e^+e^- collisions at LEP [60].

Same picture in the beauty sector: relative branching into baryons vs. mesons depends on the hadronic environment!

LHC Run 4 projections

The ALICE Forward Calorimeter (FoCal) upgrade

Florian Jonas poster/flash talk

FoCal-E: high granularity Si-W sampling calo FoCal-H: conventional metal-scintillator sampling calo

Main physics goal: study universal structure of matter at low-*x*

Flagship measurement: isolated direct photons for $p_T > 2 \text{ GeV/c}$ at very forward η

Installation: LHC Long Shutdown 3 Operation: LHC Run 4 (start 2029) Observables:

- π^0 and other neutral mesons
- Isolated direct photons
- Jets
- UPCs: J/ψ , ψ' , Υ
- Z, W
- Correlations

FoCal documents

Letter of Intent: CERN-LHCC-2020-009

ALICE-PUBLIC-2023-001 https://inspirehep.net/literature/2661418

ALICE-PUBLIC-2023-001 12 May 2023

Physics of the ALICE Forward Calorimeter upgrade

ALICE Collaboration *

Abstract

The ALICE Collaboration proposes to instrument the existing ALICE detector with a forward calorimeter system (FoCal), planned to take data during LHC Run 4 (2029–2032). The FoCal detector is a highly-granular Si+W electromagnetic calorimeter combined with a conventional sampling hadronic calorimeter, covering the pseudorapidity interval of 3.4 < η < 5.8. The FoCal design is optimized to measure isolated photons at most forward rapidity for $p_T \gtrsim 4$ GeV/c.

In this note we discuss the scientific potential of FoCal, which will enable broad exploration of gluon dynamics and non-linear QCD evolution at the smallest values of Bjorken *x* accessible at any current or near-future facility world-wide. FoCal will measure theoretically well-motivated observables in

ALICE-PUBLIC-2023-004

Technical Design Report (TDR) in preparation

FoCal-E detector

Run 4 experimental acceptance

EM in hadronic collision direct γ , DY

FoCal production rate projections

Integrated luminosity: current projections

- pp at $\sqrt{s}=8.8$ TeV: 1 week, $\mathcal{L}_{int}=4$ pb⁻¹;
- p-Pb at $\sqrt{s}=8.8$ TeV: 3 weeks, $\mathcal{L}_{int}=300$ nb⁻¹; (both p-Pb and Pb-p)
- Pb-Pb at $\sqrt{s}=5.02$ TeV: 3 months, $\mathcal{L}_{int}=7$ nb⁻¹;
- pp at $\sqrt{s}=14$ TeV: ~18 months, $\mathcal{L}_{int}=150$ pb⁻¹

Significant rate for inclusive γ , π^0 and jet production, from very low to very high p_T

Forward kinematics: large energy deposition in calorimeter Inclusive channel rates "Round number" int lumi

Physics of FoCal

FoCal direct photon performance

Florian Jonas poster/flash talk

Prompt photon PID cuts:

- invariant mass (IM)
- shower shape (SS)
- isolation: EM + Hadronic

Background rejection:factor~10

 $\gamma_{dir}/all > 50\% \rightarrow high$ precision measurement

Good π^0 efficiency

Partonic kinematics: γ in FoCal

FoCal has flexibility to tune partonic kinematics over significant range \rightarrow overlap with EIC kinematics

6/

FoCal and nPDFs

Florian Jonas poster/flash talk

Bayesian reweighting of nNNPDF3.0 using FoCal pseudo-data

Significant reduction in uncertainties Systematically independent of D-meson constraint

- no hadronization effects
- \rightarrow Universality test of low-*x* formalisms

Forward physics at the LHC

Jets in FoCal

Very forward jet measurements are extremely challenging:

- hadronic shower transverse profile width ~ 15 cm, independent of η
- but profile in (x,y) of jet with fixed R in (η,ϕ) shrinks at high η

Average hadronic shower profile of single π^+ with E=500 GeV in FoCal at various η

Black: contour of jet with R=0.6 in (η,ϕ) Red: nuclear interaction length of Cu; contains ~81% of shower energy

Jets in FoCal: Jet Energy Scale

Misses >25% of jet energy

- complex calibration
- systematics of model-dependent corrections?

JES mitigation: Neutral Energy Fraction

NEF: fraction of jet energy carried by EM shower Mitigation strategy:

- utilize tighter transverse profile of EM shower and excellent FoCal-E spatial resolution
- bias jet selection by Neutral Energy Fraction (NEF)

Theory issues: does NEF cut break factorization? How to model?

Other channels under study

 $\Upsilon(1s) \to e^+ e^-$

Selected theory calculations of saturation effects that can be probed by FoCal

R_{pPb} : forward π^0 , γ

Ducloué, Lappi, and Mäntysaari, Phys. Rev. D97 (2018) 054023

LO Dipole-CGC calculation

Significant difference in low p_T suppression between π^0 and isolated γ Different production channels have different sensitivity to saturation

- $\pi^0: p_T >> Q_{sat}$
- Direct γ : qg $\rightarrow \gamma$ g; k_T~ Q_{sat} Authors: picture may change @ NLO

Lesson for FoCal/LHCb: both measurements should be done

Forward di-jets

 $\gamma {+} jet,$ balanced di-jet at low-x: $k_T {\sim} \; Q_{sat}$

- k_T provides knob to dial between saturation and linear QCD
- γ +jet: dipole TMD gluon distribution
- di-jet: multiple TMD distributions

Balanced di-jet acoplanarity

KaTie (Kotko et al.)

- Improved TMD (iTMD) framework
- Sudakov resummation
- NP effects: jet showering, hadronization (PYTHIA)

van Hameren, Comput. Phys. Commun. 224 (2018) 371 van Hameren et al., JHEP 12 (2016) 034 Kotko et al., JHEP 09 (2015) 106 Al-Mashad et al., arXiv:2210.06613 Mäntysaari and Paukkunen, Phys. Rev. D 100 (2019) 114029 Liu et al. JHEP 07 (2022) 041 Wang et al. arXiv:2211.08322

Forward γ +jet

KaTie calculations (I. Ganguli et al., arXiv:2306.04706)

 γ +jet distributions:

- P-Pb vs pp
- p_T: negligible modification
- $\Delta \phi$: b-to-b suppression

 γ +jet: R_{pPb} vs $\Delta \phi$

• recoil jet p_T dependence

Compare to di-jet: dipole vs quadrupole TMD

UPCs in FoCal: photoproduction of J/ψ , ψ'

A. Bylinkin, J. Nystrand and D. Tapia Takaki, J. Phys. G 50 (2023) 055105

 $W_{\gamma p} = photon - proton CM energy$

FoCal extends reach in $W_{\gamma p}$

Explores region where saturation effects may be significant

Coherent vs incoherent scattering: dissociative production

Final comments: discriminating non-linear from linear QCD evolution

Fast-forward 10 years: lots of beautiful new data on ep, eA, and pA from EIC+forward RHIC/LHC.

How will we use these heterogenous datasets optimally to search for saturation and quantify its effects?

Non-linearity via DIS structure fns

Armesto et al. PRD 105 (2022) 11, 114017 arXiv:2203.05846

Example: what is the sensitivity of DIS Structure Functions for discriminating linear and non-linear evolution?

Toy model:

- Compute F_2 and F_L in EIC and LHeC kinematics; no exp. uncert
- Both collinear factorization and CGC (non-linear) approaches
- Match at $x \sim 10^{-2}$ and $Q^2 \sim 10Q_s^2$
- Evolve away from matching region and compare

Relative difference of nonlinear and linear evolution

EIC: F₂ difference ~few percent; F_L difference ~10% \rightarrow challenging 10/23/23 Forward physics at the LHC

Global analysis of saturation data

Common approach: global nPDF fit to Struct. Fns.

• limited sensitivity to non-linear evolution: see previous slide Many saturation observables do not map directly onto nPDFs:

- angular decorrelation (acoplanarity),
- Jet substructure
- Energy-energy correlators
- ...

More general approach: Bayesian Inference

Instructive example from heavy-ion physics:

- Bayesian Inference using two different models of Quark-Gluon Plasma dynamics with broad array of low-p_T data
- Extract transport coefficients and uncertainties
- Re-predict experimental observables
- Models are not equally successful!

 \rightarrow needs significant development for EIC + fRHIC + fLHC

Summary

Forward p+A at the LHC: deep theoretical connection to EIC low-x physics

• universality tests of low-*x* formalisms

Run 2 data

- jets, D-mesons, π^0
- strong constraints on nPDFs
- potential issue: non-universality of charm/beauty fragmentation

ALICE/FoCal upgrade for Run 4:

- direct photons, jets, mesons + correlations; UPCs
- lower reach in *x*
- new universality tests

Key issue: global analysis

• how do we best exploit these vast and heterogeneous datasets to explore linear vs non-linear evolution at low-*x*?

Backup

Partonic kinematics: γ , π^0 (FoCal); D-meson (LHCb)

Di-hadron correlations RHIC and LHC

- A-dependent recoil yield suppression
- no significant azimuthal broadening (!)

Stasto, Wei, Xiao, and Yuan, Phys. Lett. B784 (2018) 301

Dilute-dense LO + Sudakov

- probes quadrupole operator
- fits STAR data similar to left panel

Small broadening effect: experimentally challenging

• NLO needed for theory uncert.

14 TeV pp collisions: forward isolated photons

Compare two recent PDF fits: tension in FoCal acceptance

• FoCal provides unique constraints of pp PDFs

FoCal probes $x \sim 5x10^{-7}$

• sensitive to saturation effects even in pp collisions?