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leading twist

FFs in the transverse SSAs, and to study the feasibility of
experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.

II. CALCULATION OF TWIST-3
TMD DISTRIBUTIONS IN

SPECTATOR-DIQUARK MODEL

In this section, we present the calculation on the four
twist-3 TMD distributions in a spectator model, which was
developed in Ref. [43]. In this model, the proton is
supposed to be constituted by a quark and a diquark,
and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
vector cases.
The gauge-invariant quark-quark correlator can be

expressed as

Φðx; kTÞ ¼
Z

dξ−d2ξT
ð2πÞ3

eik·ξhPSjψ̄ jð0ÞL½0−;∞−%

× L½0T; ξT %L½∞−; ξ−%ψ iðξÞjPSi: ð1Þ

For convenience here we adopt the light-cone coordinates
½a−; aþ; aT % for an arbitrary four-vector a, with a' ¼
ða0 ' a3Þ=

ffiffiffi
2

p
¼ a · n∓, where the two lightlike vectors

are defined as nþ ¼ ½0; 1; 0T % and n− ¼ ½1; 0; 0T %. The
vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ

At twist-3 level, the correlator (1) for a transversely
polarized nucleon can be decomposed into [31]

Φðx; kT; STÞjtwist-3

¼ M
2Pþ

"
−ϵρσT γρSTσf0T þ

ðkT · STÞϵ
ρσ
T γρkTσ

M2
f⊥T

−
kT · ST
M

½nþ; n−%γ5
2

hT þ ½ST; kT %γ5
2M

h⊥T þ ( ( (
#
; ð3Þ

FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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Figure 8. Collins SFA for charged mesons (left: pions; right: kaons) presented either in bins of x,
z, or Ph⊥. Data at large values of z, marked by open points in the z projection, are not included
in the other projections. Systematic uncertainties are given as bands, not including the additional
scale uncertainty of 7.3% due to the precision of the target-polarization determination.

The results for the transversity distributions from global fits are of the same sign18 as
results for the helicity distribution, but somewhat smaller in magnitude, by as much as a
factor of two for the d-quark distribution. Flavor decompositions of the collinear transver-
sity distribution, based on analysis of dihadron production in semi-inclusive deep-inelastic
scattering [127–129], e+e− annihilation [130], and more recently in p↑p collision [131], con-
firm this general behavior [132–135]. In general, the d-quark transversity distribution is
much less constrained, given the u-quark dominance in many of the processes employed
in the extractions. It is interesting to remark that all phenomenological extractions of
the transversity distribution present some discrepancies with respect to lattice predictions,
especially for what concerns the u-quark contribution to the nucleon tensor charge (see,
e.g., refs. [136–138]).

The Collins asymmetries extracted here for mesons in one-dimensional projections
resemble to a high degree those published previously [29]. This is expected as based on
the same data set, though involving a number of analysis improvements (cf. section 3.4).
The most significant advancement in the measurement of the SFA shown in figure 8 is the
inclusion of the ε-dependent kinematic prefactors in the probability density function (3.3)
of the maximum-likelihood fit. This leads on average to an amplification of the asymmetry
magnitude as, in the case of the Collins asymmetry, this prefactor is smaller than unity
and thus diminishes the transversity/Collins-induced modulation.

The Collins asymmetries for charged pions are opposite in sign and increasing with x,
which can be attributed to transversity predominantly being a valence-quark effect. The
dependence on z in the semi-inclusive range is a clear increase with z for π+, while first
clearly increasing but then leveling out for π −. As expected, the asymmetries increase

18Note that the absolute sign can not be determined unambiguously due to the chiral-odd nature of both
transversity and the Collins fragmentation function.
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inclusion of the ε-dependent kinematic prefactors in the probability density function (3.3)
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magnitude as, in the case of the Collins asymmetry, this prefactor is smaller than unity
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Collins fragmentation function: Artru model

string break, quark-antiquark pair with vacuum numbers:

polarisation component in lepton scattering plane reversed by photoabsorption:

courtesy from U. Elschenbroich

orbital angular momentum creates transverse momentum:

X. Artru et al. , Z. Phys. C73 (1997) 527

Courtesy U. Elschenbroich5
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scattering [127–129], e+e− annihilation [130], and more recently in p↑p collision [131], con-
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much less constrained, given the u-quark dominance in many of the processes employed
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the transversity distribution present some discrepancies with respect to lattice predictions,
especially for what concerns the u-quark contribution to the nucleon tensor charge (see,
e.g., refs. [136–138]).

The Collins asymmetries extracted here for mesons in one-dimensional projections
resemble to a high degree those published previously [29]. This is expected as based on
the same data set, though involving a number of analysis improvements (cf. section 3.4).
The most significant advancement in the measurement of the SFA shown in figure 8 is the
inclusion of the ε-dependent kinematic prefactors in the probability density function (3.3)
of the maximum-likelihood fit. This leads on average to an amplification of the asymmetry
magnitude as, in the case of the Collins asymmetry, this prefactor is smaller than unity
and thus diminishes the transversity/Collins-induced modulation.

The Collins asymmetries for charged pions are opposite in sign and increasing with x,
which can be attributed to transversity predominantly being a valence-quark effect. The
dependence on z in the semi-inclusive range is a clear increase with z for π+, while first
clearly increasing but then leveling out for π −. As expected, the asymmetries increase
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results for the helicity distribution, but somewhat smaller in magnitude, by as much as a
factor of two for the d-quark distribution. Flavor decompositions of the collinear transver-
sity distribution, based on analysis of dihadron production in semi-inclusive deep-inelastic
scattering [127–129], e+e− annihilation [130], and more recently in p↑p collision [131], con-
firm this general behavior [132–135]. In general, the d-quark transversity distribution is
much less constrained, given the u-quark dominance in many of the processes employed
in the extractions. It is interesting to remark that all phenomenological extractions of
the transversity distribution present some discrepancies with respect to lattice predictions,
especially for what concerns the u-quark contribution to the nucleon tensor charge (see,
e.g., refs. [136–138]).

The Collins asymmetries extracted here for mesons in one-dimensional projections
resemble to a high degree those published previously [29]. This is expected as based on
the same data set, though involving a number of analysis improvements (cf. section 3.4).
The most significant advancement in the measurement of the SFA shown in figure 8 is the
inclusion of the ε-dependent kinematic prefactors in the probability density function (3.3)
of the maximum-likelihood fit. This leads on average to an amplification of the asymmetry
magnitude as, in the case of the Collins asymmetry, this prefactor is smaller than unity
and thus diminishes the transversity/Collins-induced modulation.

The Collins asymmetries for charged pions are opposite in sign and increasing with x,
which can be attributed to transversity predominantly being a valence-quark effect. The
dependence on z in the semi-inclusive range is a clear increase with z for π+, while first
clearly increasing but then leveling out for π −. As expected, the asymmetries increase
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other. One can see that the experimental data indeed show
some tension with the Soffer bound for the d quark in the
high-x region as predicted in Ref. [94]. This saturation
happens in the region not explored by the current exper-
imental data, so future data from Jefferson Lab 12 will be
very important to test the Soffer bound and to constrain the
transversity and tensor charge.
The functions themselves are slightly different as can be

seen by comparing solid and dashes lines in Fig. 27(a). In
fact Ref. [17] uses the tree-level TMD expression (no TMD
evolution) for extraction, and we use the NLL TMD
formalism. Results should be different even though in
asymmetries, as we saw, at low energies results with NLL
TMD are comparable with the tree level. At higher energies
and Q2, the situation changes, and extracted functions
must be different. At the same time, one should remember
TMD evolution does not act as a universal Q2 suppression
factor. A complicated Fourier transform should be per-
formed that mixes Q2 and b dependence, and thus the
resulting functions are different in shape but comparable in
magnitude. It is also very encouraging that tree-level TMD
extractions yielded results very similar to our NLL extrac-
tion. This makes the previous phenomenological results
valid even though the appropriate TMD evolution was not
taken into account. It also means that we need to have
experimental data on unpolarized cross sections differential
in Ph⊥. As we have seen, the effects of evolution should be
evident in the data, and those measurements will help to
establish the validity of the modern formulation of TMD
evolution.
We compare extracted Collins fragmentation functions

−zHð3ÞðzÞ in Fig. 28 at Q2 ¼ 2.4 GeV2 with the extraction
of Torino-Cagliari-JLab 2013 [17]. The resulting Collins
FFs have the same signs, but shapes and sizes are slightly
different. Indeed one could expect it as far as Q2 of eþe− is
different, and the evolution effect must be more evident. At
the same time, those functions for both tree-level and NLL

TMD give the same (or similar) theoretical asymmetries
that are well compared to the experimental data of SIDIS
and eþe−. The favored Collins fragmentation function is
much better determined by the existing data, as one can
see from Fig. 28 that the functions at Q2 ¼ 2.4 GeV2 are
compatible within error bands. The unfavored fragmenta-
tion functions are different; however, those functions are
not determined very well by existing experimental data.
We also compare the tensor change from our and other

extractions in Fig. 29. The contribution to the tensor charge
of Ref. [18] is found by extraction using the so-called
dihadron fragmentation function that couples to the col-
linear transversity distribution. The corresponding func-
tions have DGLAP-type evolution known at LO and were
used in Ref. [18]. The results plotted in Fig. 29 correspond
to our estimates of the contribution to the u quark and d
quark in the region of x½0.065; 0.35& at Q2 ¼ 10 GeV2 at
68% C.L. (label 1) and the contribution to the u quark and
d quark in the same region of x and the same Q2 using the

)2
(x

,Q
1

x 
h

u
d

x

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1

-0.15
-0.1

-0.05
0

0.05

Kang et al (2015)

Anselmino et al (2013)

(a)

)2
(x

,Q
1

x 
h

u
d

x

-0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

Kang et al (2015)

Radici et al (2015)

(b)

FIG. 27. (a) Comparison of extracted transversity (solid lines and vertical-line hashed region) Q2 ¼ 2.4 GeV2 with the Torino-
Cagliari-JLab 2013 extraction [17] (dashed lines and shaded region). (b) Comparison of extracted transversity (solid lines and shaded
region) at Q2 ¼ 2.4 GeV2 with Pavia 2015 extraction [18] (shaded region).
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Predicted Sivers sign change for SIDIS and Drell-Yan
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Figure 1: (a),(b) Simple QED example for process-dependence of the Sivers functions in DIS and

the Drell-Yan process. (c),(d) Same for QCD.

case is “initial-state” and is between the remnant of the transversely polarized “hadron” and the

initial parton from the other, unpolarized, “hadron”. These necessarily have identical charges,

and the interaction is repulsive. As a result, the spin-effect in this case needs to be of opposite

sign as that in DIS.

These simple models are readily generalized to true hadronic scattering in QCD. In DIS, the

final-state interaction is through a gluon exchanged between the 3 and 3̄ states of the struck quark
and the nucleon remnant, which is attractive, as indicated in Fig. 1(c). In the Drell-Yan process,

the interaction is between the 3 and 3 states (or 3̄ and 3̄) and therefore repulsive, as shown in
Fig. 1(d). This is the essence of the – by now widely quoted – result that the Sivers functions

contributing to DIS and to the Drell-Yan process have opposite sign [3, 4, 5, 6]:

fSivers(x, k⊥)
∣∣∣
DY

= −fSivers(x, k⊥)
∣∣∣
DIS

. (1)

In the full gauge theory, the phases generated by the additional (final-state or initial-state) inter-

actions can be summed to all orders into a “gauge-link”, which is a path-ordered exponential of

the gluon field and makes the Sivers functions gauge-invariant. The non-universality of the Sivers

functions is then reflected in a process-dependence of the space-time direction of the gauge-link.

The crucial role played by the gauge link has given rise to intuitive model interpretations of

single-spin asymmetries in terms of spatial deformations of parton distributions in a transversely

polarized nucleon [19]. The process-dependence of the Sivers functions will also manifest itself

in more complicated QCD hard-scattering, albeit in a more intricate way [20]. An example is

the single-spin asymmetry in di-jet angular correlations [21, 22, 23], which is now under inves-

tigation at RHIC [24]. We note that a related initial-state interaction may give rise to azimuthal

angular dependences in the unpolarized Drell-Yan process [25, 26].

The verification of the predicted non-universality of the Sivers functions is an outstanding

challenge in strong-interaction physics. It is most cleanly possible in the Drell-Yan process,

3

DIS: 
“attractive”

D-Y: 
“repulsive”

[fq�
1T ]SIDIS = �[fq�

1T ]DY

process-dependence of Sivers functions 

Collins, PL B536 (2002) 43

234 A.V. Efremov et al. / Physics Letters B 612 (2005) 233–244

SIDIS and DY have opposite sign,

(1)f ⊥
1T

(
x,p2T

)
SIDIS = −f ⊥

1T
(
x,p2T

)
DY.

The experimental check of Eq. (1) would provide a thorough test of our understanding of the Sivers effect within
QCD and, hence, our understanding of SSA. It would crucially test the factorization approach to the description of
processes sensitive to transverse parton momenta [19–21].
In this Letter we shall discuss how the relation (1) could be checked experimentally in the Polarized Antiproton

eXperiment (PAX) planned at GSI [22,23]. A primary goal of this experiment will be to provide a polarized
antiproton beam and to measure the transversity distribution ha

1(x), cf. [24]. However, PAX will also be well
suited to access the Sivers function via SSA in p̄p↑ → µ+µ−X or p̄↑p → µ+µ−X [22,23]. In the COMPASS
experiment at CERN [25], making use of a π− beam, one would also be able to study the Sivers function via SSA
in π−p↑ → µ+µ−X.
In order to estimate the magnitude of the Sivers effect in those experiments we will roughly parameterize

f ⊥
1T (x,p2T )SIDIS from the (preliminary) HERMES data [7] using as a guideline relations derived from the QCD
limit of a large number of colours Nc [26]. Such large-Nc relations are observed to hold in nature within their
expected accuracy [27] and, as a byproduct of our study, we shall observe that this is also the case here. On
the basis of the obtained parameterization we estimate SSA for the PAX and COMPASS experiments. We also
comment briefly on parameterizations of f ⊥

1T reported previously in the literature and on model calculations.

2. The Sivers function

A definition of the unintegrated unpolarized distribution function f1(x,p2T ) and the Sivers function f ⊥
1T (x,p2T )

can be given in terms of the light-cone correlator

Φq(x,pT ) ≡
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2(2π)3
eip·ξ 〈P,ST |ψ̄q(0)γµn

µ
−W[0, ξ ;process]ψq(ξ)|P,ST 〉

∣∣∣∣
ξ+=0
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q
1
(
x,p2T

)
+ f

⊥q
1T

(
x,p2T

)εµνρσ n
µ
−nν

+p
ρ
T Sσ

T

MN
,

where the dimensionless light-like vectors n± are defined such that n+ · n− = 1. (See Ref. [28] for a precise
definition and the meaning of unintegrated distribution functions in QCD.)
The Wilson link W[0, ξ ;process] is defined in Fig. 1, cf. Refs. [17,18]. For observables integrated over pT

the process dependence of the gauge link usually cancels out. However, the situation is different for f ⊥
1T . If one

neglected the gauge link, under time-reversal the Sivers function would transform into its negative, i.e., it would
vanish [14]. However, initial or final state interactions [16,29], needed to obtain non-zero SSA [30], generate a
Wilson link for the Sivers function in any gauge [17,18]. Under time reversal the gauge link of SIDIS is transformed

Fig. 1. The path of the process-dependent gauge linkW[0, ξ ;process] which enters the definition of the Sivers function in SIDIS and DY.
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FFs in the transverse SSAs, and to study the feasibility of
experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.

II. CALCULATION OF TWIST-3
TMD DISTRIBUTIONS IN

SPECTATOR-DIQUARK MODEL

In this section, we present the calculation on the four
twist-3 TMD distributions in a spectator model, which was
developed in Ref. [43]. In this model, the proton is
supposed to be constituted by a quark and a diquark,
and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
vector cases.
The gauge-invariant quark-quark correlator can be

expressed as

Φðx; kTÞ ¼
Z

dξ−d2ξT
ð2πÞ3

eik·ξhPSjψ̄ jð0ÞL½0−;∞−%

× L½0T; ξT %L½∞−; ξ−%ψ iðξÞjPSi: ð1Þ

For convenience here we adopt the light-cone coordinates
½a−; aþ; aT % for an arbitrary four-vector a, with a' ¼
ða0 ' a3Þ=

ffiffiffi
2

p
¼ a · n∓, where the two lightlike vectors

are defined as nþ ¼ ½0; 1; 0T % and n− ¼ ½1; 0; 0T %. The
vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ

At twist-3 level, the correlator (1) for a transversely
polarized nucleon can be decomposed into [31]

Φðx; kT; STÞjtwist-3

¼ M
2Pþ

"
−ϵρσT γρSTσf0T þ

ðkT · STÞϵ
ρσ
T γρkTσ

M2
f⊥T

−
kT · ST
M

½nþ; n−%γ5
2

hT þ ½ST; kT %γ5
2M

h⊥T þ ( ( (
#
; ð3Þ

FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
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supposed to be constituted by a quark and a diquark,
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expressed as
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.
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TMD DISTRIBUTIONS IN

SPECTATOR-DIQUARK MODEL

In this section, we present the calculation on the four
twist-3 TMD distributions in a spectator model, which was
developed in Ref. [43]. In this model, the proton is
supposed to be constituted by a quark and a diquark,
and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
vector cases.
The gauge-invariant quark-quark correlator can be

expressed as
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For convenience here we adopt the light-cone coordinates
½a−; aþ; aT % for an arbitrary four-vector a, with a' ¼
ða0 ' a3Þ=

ffiffiffi
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¼ a · n∓, where the two lightlike vectors

are defined as nþ ¼ ½0; 1; 0T % and n− ¼ ½1; 0; 0T %. The
vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ

At twist-3 level, the correlator (1) for a transversely
polarized nucleon can be decomposed into [31]
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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Wandzura-Wilczek approximation [39]. However, recent
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SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.
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and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
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(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
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studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.
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supposed to be constituted by a quark and a diquark,
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vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies
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experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.
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supposed to be constituted by a quark and a diquark,
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in Sec. IV.
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In this section, we present the calculation on the four
twist-3 TMD distributions in a spectator model, which was
developed in Ref. [43]. In this model, the proton is
supposed to be constituted by a quark and a diquark,
and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
vector cases.
The gauge-invariant quark-quark correlator can be

expressed as
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are defined as nþ ¼ ½0; 1; 0T % and n− ¼ ½1; 0; 0T %. The
vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ

At twist-3 level, the correlator (1) for a transversely
polarized nucleon can be decomposed into [31]
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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FFs in the transverse SSAs, and to study the feasibility of
experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.
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twist-3 TMD distributions in a spectator model, which was
developed in Ref. [43]. In this model, the proton is
supposed to be constituted by a quark and a diquark,
and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
vector cases.
The gauge-invariant quark-quark correlator can be

expressed as
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eik·ξhPSjψ̄ jð0ÞL½0−;∞−%

× L½0T; ξT %L½∞−; ξ−%ψ iðξÞjPSi: ð1Þ

For convenience here we adopt the light-cone coordinates
½a−; aþ; aT % for an arbitrary four-vector a, with a' ¼
ða0 ' a3Þ=

ffiffiffi
2

p
¼ a · n∓, where the two lightlike vectors

are defined as nþ ¼ ½0; 1; 0T % and n− ¼ ½1; 0; 0T %. The
vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ

At twist-3 level, the correlator (1) for a transversely
polarized nucleon can be decomposed into [31]

Φðx; kT; STÞjtwist-3
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
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model developed in Ref. [43], which is also applied in
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sible at HERMES, JLab, and COMPASS. Although the
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vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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FFs in the transverse SSAs, and to study the feasibility of
experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.

II. CALCULATION OF TWIST-3
TMD DISTRIBUTIONS IN

SPECTATOR-DIQUARK MODEL

In this section, we present the calculation on the four
twist-3 TMD distributions in a spectator model, which was
developed in Ref. [43]. In this model, the proton is
supposed to be constituted by a quark and a diquark,
and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
vector cases.
The gauge-invariant quark-quark correlator can be

expressed as

Φðx; kTÞ ¼
Z

dξ−d2ξT
ð2πÞ3

eik·ξhPSjψ̄ jð0ÞL½0−;∞−%

× L½0T; ξT %L½∞−; ξ−%ψ iðξÞjPSi: ð1Þ

For convenience here we adopt the light-cone coordinates
½a−; aþ; aT % for an arbitrary four-vector a, with a' ¼
ða0 ' a3Þ=

ffiffiffi
2

p
¼ a · n∓, where the two lightlike vectors

are defined as nþ ¼ ½0; 1; 0T % and n− ¼ ½1; 0; 0T %. The
vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ

At twist-3 level, the correlator (1) for a transversely
polarized nucleon can be decomposed into [31]

Φðx; kT; STÞjtwist-3

¼ M
2Pþ

"
−ϵρσT γρSTσf0T þ

ðkT · STÞϵ
ρσ
T γρkTσ

M2
f⊥T

−
kT · ST
M

½nþ; n−%γ5
2

hT þ ½ST; kT %γ5
2M

h⊥T þ ( ( (
#
; ð3Þ

FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
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necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
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in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
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vector that is perpendicular to the vectors n'. It is often to
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as
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fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.
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and the diquark can be a scalar particle or an axial-vector
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in Fig. 1, which are identical for the scalar and axial-
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vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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Twist-3: hsin(�)ihLU
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• Opposite behaviour for π- z projection due to different x range probed
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Fig. 4. Virtual-photon asymmetry amplitudes A Q ,sin(φ)
LU for positively and negatively charged pions, as measured by HERMES (blue circles) and CLAS (grey squares) on a 

hydrogen target, as a function of xB , z, and Ph⊥ . The data corresponding to the intervals in z indicated by the open symbols are not included in the projections as a function 
of xB and Ph⊥ . For both experiments error bars represent the statistical uncertainties only. There is an additional scale uncertainty of 3% for the HERMES results originating 
from the measurement of the beam polarization.

Fig. 5. Virtual-photon asymmetry amplitudes for negatively charged pions as a function of z for slices in Ph⊥ (columns) and xB (rows), for data collected on a hydrogen 
(closed symbols) and deuterium (open symbols) target. The error bars represent the statistical uncertainties, while the error bands represent systematic uncertainties. In 
addition, there is a systematic uncertainty originating from the measurement of the beam polarization, corresponding to a scale factor of 3%.
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Transverse Momentum Distributions – 3D!
3D Maps of partonic distributions
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Target polarization state

• unpolarized target: 
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Fit angular distribution of decay pions                  and extract either 
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 SDMEsρ0

20

• 5 classes of SDMEs

• unpolarised and polarised SDMEs

• proton & deuteron similar

15

scaled SDME

proton
deuteron

A:  γ *L  →  ρ 0L
γ *T  →  ρ 0T

B: Interference  γ *L  →  ρ 0L  &  γ *T  →  ρ 0T

C:  γ *T  →  ρ 0L

D:  γ *L  →  ρ 0T

E:  γ *-T  →  ρ 0T

Fig. 9. The 23 SDMEs extracted from ρ0 data: proton (squares) and deuteron (circles) in the entire HERMES kinematics
with 〈x〉 = 0.08, 〈Q2〉 = 1.95 GeV2, 〈−t′〉 = 0.13 GeV2. The SDMEs are multiplied by prefactors in order to represent
the normalized leading contribution of the corresponding amplitude (see (77-99)). The inner error bars represent the
statistical uncertainties, while the outer ones indicate the statistical and systematic uncertainties added in quadrature.
SDMEs measured with unpolarized (polarized) beam are displayed in the unshaded (shaded) areas. The vertical dashed
line at zero is indicated for SDMEs expected to be zero under the hypothesis of SCHC.

are chosen to have the main contribution to the plot-
ted representatives for the unpolarized and polarized
SDMEs equal to Re{T11T ∗

00}/N and Im{T11T ∗
00}/N ,

respectively. This corresponds to the general rule that
is applicable to classes B to E: the dominant contribu-
tion of the unpolarized (polarized) element presented
in Fig. 9 is proportional to the real (imaginary) part
of a product of two amplitudes. Class C contains the
main terms T01T ∗

00/N (for r500/
√
2 and r800/

√
2) and

T01T ∗
11/N . The dominant contributions for classes D

and E contain terms T10T ∗
11/N and T1−1T ∗

11/N , re-
spectively.

Given the scaled SDMEs in Fig. 9, it easily can
be seen that the two unpolarized SDMEs of class B
have large values, similar to those of class A. This
suggests the presence of a substantial interference be-
tween the two dominant amplitudes T00 and T11. The
two polarized class B SDMEs are significantly non-
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in Fig. 9 is proportional to the real (imaginary) part
of a product of two amplitudes. Class C contains the
main terms T01T ∗

00/N (for r500/
√
2 and r800/

√
2) and

T01T ∗
11/N . The dominant contributions for classes D

and E contain terms T10T ∗
11/N and T1−1T ∗

11/N , re-
spectively.

Given the scaled SDMEs in Fig. 9, it easily can
be seen that the two unpolarized SDMEs of class B
have large values, similar to those of class A. This
suggests the presence of a substantial interference be-
tween the two dominant amplitudes T00 and T11. The
two polarized class B SDMEs are significantly non-
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Fig. 2. Helicity-amplitude ratios obtained from the 25-parameter fit in the entire kinematic region, characterized by hW i = 4.73

GeV, hQ2i = 1.93 GeV2, h�t0i = 0.132 GeV2. While the phase of u(1)
11 is fixed according to the results of Refs. [26, 43, 44], its

modulus is fit so that the two crosses represent the results of fitting one free parameter. The value of Im{t(1)11 } (open diamond)
represents the result of Ref. [26]; the error bar shows the total uncertainty. For all other points, the inner error bars represent the
statistical uncertainty, while the outer ones represent statistical and systematic uncertainties added in quadrature. An additional
scale uncertainty of 8% originating from the uncertainty on the target polarization is present for the ratios t(2)�V ��

, u(2)
�V ��

, but

not shown. An extra scale uncertainty of 2% originating from the uncertainty on the beam polarization is present for the ratios
Im{t(1)�V ��

}, Re{t(2)�V ��
} and Re{u(2)

�V ��
}, but also not shown. The shaded area corresponds to results that were also obtained

in Ref. [26], while all other points are obtained for the first time. The helicity-amplitude ratios are ordered according to the
SDME classes proposed in Refs. [16, 37].

was not exploited in the analyses presented in Ref. [28].
While in Refs. [16] and [28] a total of 53 SDMEs could be
extracted, the amplitude method presented here allows
for the calculation of 71 SDMEs based on the extraction
of 25 parameters.

As seen from the figures, there is reasonable agree-
ment between SDMEs obtained with the SDME method
and those from the amplitude method. It is possible that
the values of the SDMEs obtained in these two methods
do not coincide, becasue the parameter space for SDMEs
in the SDME method is di↵erent from that in the am-
plitude method. Indeed, the SDMEs should belong to a
special region in the 71-dimensional real space to give
a non-negative angular distribution. However, at present
the equations determining the boundaries of this region
are unknown. The physical SDMEs can be represented in
terms of 17 helicity-amplitude ratios. This restricts the
region in the 71-dimensional space. This requirement is

not taken into account in the SDME method, but it sup-
presses statistical fluctuations especially when a SDME
value is close to the boundary of the allowed region. Note
that the positivity requirement on the angular distribu-
tion is inherent to the amplitude method, while it is not
to the SDME method, where it is usually imposed artifi-
cially.

5.3 Comparison to amplitudes calculated in a
GPD-based handbag model

Within the handbag approach (see, e.g., Refs. [15, 46]),
the amplitudes for �

⇤
L ! VL and �

⇤
T ! VT transitions

are given by convolutions of appropriate subprocess am-
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, but
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was not exploited in the analyses presented in Ref. [28].
While in Refs. [16] and [28] a total of 53 SDMEs could be
extracted, the amplitude method presented here allows
for the calculation of 71 SDMEs based on the extraction
of 25 parameters.

As seen from the figures, there is reasonable agree-
ment between SDMEs obtained with the SDME method
and those from the amplitude method. It is possible that
the values of the SDMEs obtained in these two methods
do not coincide, becasue the parameter space for SDMEs
in the SDME method is di↵erent from that in the am-
plitude method. Indeed, the SDMEs should belong to a
special region in the 71-dimensional real space to give
a non-negative angular distribution. However, at present
the equations determining the boundaries of this region
are unknown. The physical SDMEs can be represented in
terms of 17 helicity-amplitude ratios. This restricts the
region in the 71-dimensional space. This requirement is

not taken into account in the SDME method, but it sup-
presses statistical fluctuations especially when a SDME
value is close to the boundary of the allowed region. Note
that the positivity requirement on the angular distribu-
tion is inherent to the amplitude method, while it is not
to the SDME method, where it is usually imposed artifi-
cially.

5.3 Comparison to amplitudes calculated in a
GPD-based handbag model

Within the handbag approach (see, e.g., Refs. [15, 46]),
the amplitudes for �

⇤
L ! VL and �

⇤
T ! VT transitions

are given by convolutions of appropriate subprocess am-
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Fig. 2. Helicity-amplitude ratios obtained from the 25-parameter fit in the entire kinematic region, characterized by hW i = 4.73

GeV, hQ2i = 1.93 GeV2, h�t0i = 0.132 GeV2. While the phase of u(1)
11 is fixed according to the results of Refs. [26, 43, 44], its

modulus is fit so that the two crosses represent the results of fitting one free parameter. The value of Im{t(1)11 } (open diamond)
represents the result of Ref. [26]; the error bar shows the total uncertainty. For all other points, the inner error bars represent the
statistical uncertainty, while the outer ones represent statistical and systematic uncertainties added in quadrature. An additional
scale uncertainty of 8% originating from the uncertainty on the target polarization is present for the ratios t(2)�V ��

, u(2)
�V ��

, but

not shown. An extra scale uncertainty of 2% originating from the uncertainty on the beam polarization is present for the ratios
Im{t(1)�V ��

}, Re{t(2)�V ��
} and Re{u(2)

�V ��
}, but also not shown. The shaded area corresponds to results that were also obtained

in Ref. [26], while all other points are obtained for the first time. The helicity-amplitude ratios are ordered according to the
SDME classes proposed in Refs. [16, 37].

was not exploited in the analyses presented in Ref. [28].
While in Refs. [16] and [28] a total of 53 SDMEs could be
extracted, the amplitude method presented here allows
for the calculation of 71 SDMEs based on the extraction
of 25 parameters.

As seen from the figures, there is reasonable agree-
ment between SDMEs obtained with the SDME method
and those from the amplitude method. It is possible that
the values of the SDMEs obtained in these two methods
do not coincide, becasue the parameter space for SDMEs
in the SDME method is di↵erent from that in the am-
plitude method. Indeed, the SDMEs should belong to a
special region in the 71-dimensional real space to give
a non-negative angular distribution. However, at present
the equations determining the boundaries of this region
are unknown. The physical SDMEs can be represented in
terms of 17 helicity-amplitude ratios. This restricts the
region in the 71-dimensional space. This requirement is

not taken into account in the SDME method, but it sup-
presses statistical fluctuations especially when a SDME
value is close to the boundary of the allowed region. Note
that the positivity requirement on the angular distribu-
tion is inherent to the amplitude method, while it is not
to the SDME method, where it is usually imposed artifi-
cially.

5.3 Comparison to amplitudes calculated in a
GPD-based handbag model

Within the handbag approach (see, e.g., Refs. [15, 46]),
the amplitudes for �

⇤
L ! VL and �

⇤
T ! VT transitions

are given by convolutions of appropriate subprocess am-
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Fig. 2. Helicity-amplitude ratios obtained from the 25-parameter fit in the entire kinematic region, characterized by hW i = 4.73

GeV, hQ2i = 1.93 GeV2, h�t0i = 0.132 GeV2. While the phase of u(1)
11 is fixed according to the results of Refs. [26, 43, 44], its

modulus is fit so that the two crosses represent the results of fitting one free parameter. The value of Im{t(1)11 } (open diamond)
represents the result of Ref. [26]; the error bar shows the total uncertainty. For all other points, the inner error bars represent the
statistical uncertainty, while the outer ones represent statistical and systematic uncertainties added in quadrature. An additional
scale uncertainty of 8% originating from the uncertainty on the target polarization is present for the ratios t(2)�V ��

, u(2)
�V ��

, but

not shown. An extra scale uncertainty of 2% originating from the uncertainty on the beam polarization is present for the ratios
Im{t(1)�V ��

}, Re{t(2)�V ��
} and Re{u(2)

�V ��
}, but also not shown. The shaded area corresponds to results that were also obtained

in Ref. [26], while all other points are obtained for the first time. The helicity-amplitude ratios are ordered according to the
SDME classes proposed in Refs. [16, 37].

was not exploited in the analyses presented in Ref. [28].
While in Refs. [16] and [28] a total of 53 SDMEs could be
extracted, the amplitude method presented here allows
for the calculation of 71 SDMEs based on the extraction
of 25 parameters.

As seen from the figures, there is reasonable agree-
ment between SDMEs obtained with the SDME method
and those from the amplitude method. It is possible that
the values of the SDMEs obtained in these two methods
do not coincide, becasue the parameter space for SDMEs
in the SDME method is di↵erent from that in the am-
plitude method. Indeed, the SDMEs should belong to a
special region in the 71-dimensional real space to give
a non-negative angular distribution. However, at present
the equations determining the boundaries of this region
are unknown. The physical SDMEs can be represented in
terms of 17 helicity-amplitude ratios. This restricts the
region in the 71-dimensional space. This requirement is

not taken into account in the SDME method, but it sup-
presses statistical fluctuations especially when a SDME
value is close to the boundary of the allowed region. Note
that the positivity requirement on the angular distribu-
tion is inherent to the amplitude method, while it is not
to the SDME method, where it is usually imposed artifi-
cially.

5.3 Comparison to amplitudes calculated in a
GPD-based handbag model

Within the handbag approach (see, e.g., Refs. [15, 46]),
the amplitudes for �

⇤
L ! VL and �

⇤
T ! VT transitions

are given by convolutions of appropriate subprocess am-
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Fig. 2. Helicity-amplitude ratios obtained from the 25-parameter fit in the entire kinematic region, characterized by hW i = 4.73

GeV, hQ2i = 1.93 GeV2, h�t0i = 0.132 GeV2. While the phase of u(1)
11 is fixed according to the results of Refs. [26, 43, 44], its

modulus is fit so that the two crosses represent the results of fitting one free parameter. The value of Im{t(1)11 } (open diamond)
represents the result of Ref. [26]; the error bar shows the total uncertainty. For all other points, the inner error bars represent the
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, but

not shown. An extra scale uncertainty of 2% originating from the uncertainty on the beam polarization is present for the ratios
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}, but also not shown. The shaded area corresponds to results that were also obtained

in Ref. [26], while all other points are obtained for the first time. The helicity-amplitude ratios are ordered according to the
SDME classes proposed in Refs. [16, 37].

was not exploited in the analyses presented in Ref. [28].
While in Refs. [16] and [28] a total of 53 SDMEs could be
extracted, the amplitude method presented here allows
for the calculation of 71 SDMEs based on the extraction
of 25 parameters.

As seen from the figures, there is reasonable agree-
ment between SDMEs obtained with the SDME method
and those from the amplitude method. It is possible that
the values of the SDMEs obtained in these two methods
do not coincide, becasue the parameter space for SDMEs
in the SDME method is di↵erent from that in the am-
plitude method. Indeed, the SDMEs should belong to a
special region in the 71-dimensional real space to give
a non-negative angular distribution. However, at present
the equations determining the boundaries of this region
are unknown. The physical SDMEs can be represented in
terms of 17 helicity-amplitude ratios. This restricts the
region in the 71-dimensional space. This requirement is

not taken into account in the SDME method, but it sup-
presses statistical fluctuations especially when a SDME
value is close to the boundary of the allowed region. Note
that the positivity requirement on the angular distribu-
tion is inherent to the amplitude method, while it is not
to the SDME method, where it is usually imposed artifi-
cially.

5.3 Comparison to amplitudes calculated in a
GPD-based handbag model

Within the handbag approach (see, e.g., Refs. [15, 46]),
the amplitudes for �

⇤
L ! VL and �

⇤
T ! VT transitions

are given by convolutions of appropriate subprocess am-
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Fig. 2. Helicity-amplitude ratios obtained from the 25-parameter fit in the entire kinematic region, characterized by hW i = 4.73

GeV, hQ2i = 1.93 GeV2, h�t0i = 0.132 GeV2. While the phase of u(1)
11 is fixed according to the results of Refs. [26, 43, 44], its

modulus is fit so that the two crosses represent the results of fitting one free parameter. The value of Im{t(1)11 } (open diamond)
represents the result of Ref. [26]; the error bar shows the total uncertainty. For all other points, the inner error bars represent the
statistical uncertainty, while the outer ones represent statistical and systematic uncertainties added in quadrature. An additional
scale uncertainty of 8% originating from the uncertainty on the target polarization is present for the ratios t(2)�V ��

, u(2)
�V ��

, but

not shown. An extra scale uncertainty of 2% originating from the uncertainty on the beam polarization is present for the ratios
Im{t(1)�V ��

}, Re{t(2)�V ��
} and Re{u(2)

�V ��
}, but also not shown. The shaded area corresponds to results that were also obtained

in Ref. [26], while all other points are obtained for the first time. The helicity-amplitude ratios are ordered according to the
SDME classes proposed in Refs. [16, 37].

was not exploited in the analyses presented in Ref. [28].
While in Refs. [16] and [28] a total of 53 SDMEs could be
extracted, the amplitude method presented here allows
for the calculation of 71 SDMEs based on the extraction
of 25 parameters.

As seen from the figures, there is reasonable agree-
ment between SDMEs obtained with the SDME method
and those from the amplitude method. It is possible that
the values of the SDMEs obtained in these two methods
do not coincide, becasue the parameter space for SDMEs
in the SDME method is di↵erent from that in the am-
plitude method. Indeed, the SDMEs should belong to a
special region in the 71-dimensional real space to give
a non-negative angular distribution. However, at present
the equations determining the boundaries of this region
are unknown. The physical SDMEs can be represented in
terms of 17 helicity-amplitude ratios. This restricts the
region in the 71-dimensional space. This requirement is

not taken into account in the SDME method, but it sup-
presses statistical fluctuations especially when a SDME
value is close to the boundary of the allowed region. Note
that the positivity requirement on the angular distribu-
tion is inherent to the amplitude method, while it is not
to the SDME method, where it is usually imposed artifi-
cially.

5.3 Comparison to amplitudes calculated in a
GPD-based handbag model

Within the handbag approach (see, e.g., Refs. [15, 46]),
the amplitudes for �

⇤
L ! VL and �

⇤
T ! VT transitions

are given by convolutions of appropriate subprocess am-
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• 5 classes of helicity amplitude ratios

accessible via unpolarized target

• 5 classes of helicity amplitude ratios

8% uncertainty target polarization 
2% uncertainty beam polarization

hW i = 4.73 GeV

hQ2i = 1.93 GeV2

h�t0i = 0.132 GeV2

accessible via transversely polarized target

u(1)
11 = U (1)

11 /T0 1
2 0

1
2

cf. quark exchange
u1 = 0.047 ± 0.010 ± 0.029COMPASS:

diffraction ~ 2 gluon exchange  NPE→21

• Asymmetry between natural and unnatural parity exchange

PNPE,T =
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T − σU
T

σN
T + σU

T
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2r1
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Figure 39: Dependence, for ρ meson production, of the ratio R = σL/σT of the longitudinal to
the transverse cross sections, determined using Eq. (29), on (a) W ; (b) |t|; (c) mππ, separately
for 2.5 ≤ Q2 < 5 GeV2 and for 5 ≤ Q2 ≤ 60 GeV2; for W , the latter bin is divided into
5 ≤ Q2 < 15.5 and 15.5 ≤ Q2 ≤ 60 GeV2. The curves in (c) are from the MRT model [107].
The measurements are given in Tables 50-52.
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coefficients: linear in GPDs 

Interference term for unpol. nucleon, longitudinally pol. lepton beam
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Compare DVCS and TCS: understand QCD 
corrections and check universality.



Timelike Compton scattering
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 same information as DVCS∼ Imℋ :

Photon polarisation asymmetry Forward-backward asymmetry

∼ Reℋ
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beam-charge asymmetries: access to Reℋ

• Double DVCS: access to GPDs at x ≠ ± ξ

proposal: at SOLID with muon detector added

• JLab at 20+ GeV?
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Fixed-target at LHCbLHCb, a single-arm forward spectrometer perfectly suited 
for fixed target collisions

LHC beam

optimised for studying particles containing c- and b-quarks

2 < η < 5Forward acceptance:

9
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IJMPA	30	(2015)	1530022

Tracking	system	momentum	resolution	
Δp/p	=	0.5%–1.0%	(5	GeV/c	–	100	GeV/c)

LHCb upgrade 2019-2020 
Collision rate at 40 MHz 
Pile-up factor μ ≈ 5 
Remove L0 triggers (software trigger)  
Read out the full detector at 40 MHz 
Replace the entire tracking system
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storage cell

WFS

375 mm

VELO

7 SMOG2 gas feed system

The SMOG apparatus is equipped with a gas feed system, shown in Fig. 2, which allows to
injects gas into the VELO vessel, Fig. 5. This system has only one feed line (used for di↵erent
noble gases), and cannot provide accurate determination of the injected gas flow rate Q.

For SMOG2 a new GFS, schematically shown in Fig. 36, has been designed. This system
includes an additional feed line directly into the cell center via a capillary, Fig. 29. The amount
of gas injected can be accurately measured in order to precisely compute the target densities
from the cell geometry and temperature.

Beyond the constraints requested by LHC and LHCb, the scheme shown in Fig. 36 is a well
established system, operated by the proponents in previous experiments [32, 33].

7.1 Overview

The system consists of four assembly groups, Fig. 36.

Figure 36: The four assembly groups of the SMOG2 Gas Feed System: (i) GFS Main Table, (ii) Gas
Supply with reservoirs, (iii) Pumping Station (PS) for the GFS, and (iv) Feed Lines. The pressure gauges
are labelled AG1 (Absolute Gauge 1), AG2 (Absolute Gauge 2). The two dosing valves are labelled
DVS (Dosing Valve for Stable pressure in the injection volume) and DVC (Dosing Valve for setting the
Conductance). The Feeding Connections include the feeding into the VELO vessel and into the storage
cell. The corresponding valves are labelled CV (Cell Valve), VV (VELO Valve) and SV (Safety Valve). A
Full Range Gauge (FRG) monitors the pressure upstream of the last valves for feeding into the vessel
(VV) and into the Cell (VC). A RGA with restriction and PS will be employed to analyze the composition
of the injected gas (see Sect. 6.4).

(i) GFS Main Table: Table which hosts the main components for the injection of calibrated
gas flow (volumes, gauges, and electro–pneumatic valves), to be located on the balcony at
the P8 cavern;

37

Gas Feed System

Openable cell

34

It is the only object into 
the LHC primary 

vacuum

SMOG2

inject gas: He, Ne, Ar, and H2, D2
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Fixed-target at LHCbUnique kinematical region

At the LHC fixed target pp, pp , pA, Pb-p, Pb-p  or Pb-A collisions, one has unique 
kinematic conditions at the poorly explored energy of √s ~ 100 GeV

7
In addition the exotic region at x>1 can be accessed (Fermi motion) creating a bridge between QCD and nuclear physics
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Summary

31

• TMD and GPDs: rich field of physics, 

    where TMDs have sensitivity to the parton and hadron spin and transverse momentum

    and GPDs probe the (spin-dependent) transverse position and mechanical properties of the nucleon

• Pioneering fixed-target experiments at HERMES, COMPASS, JLab 6 GeV: quark distributions

• Entering era of precision measurements: 

• JLab 12 GeV: unique precision in the valence region

• LHCb fixed-target programme provides complementary channel, allowing to check our understanding


• EIC will also provide high-precision data in high-x region


