Low-x Physics at Electron-Proton and Proton-Proton Colliders

WE-Heraeus Seminar on Forward Physics at the LHC and EIC Physikzentrum Bad Honnef 24 October 2024 Paul Newman (University of Birmingham)

- 1) Where HERA leaves us
- 2) What can the LHC do?
- 3) Future DIS facilities

Focus on collinear proton PDFs (Diffractive channels, Heavy ion targets covered in other talks)

HERA, DESY, Hamburg

So far still the only collider of electron and proton beams ever

 $\int s_{ep} \sim 300 \text{ GeV} \dots$ equivalent to a 50 TeV beam on a fixed target

'Birth' of experimental low-x physics

→ Taught us much of what we know about proton structure

→ Only ~0.5 fb⁻¹ per experiment → No deuteron or nuclear targets 2

Low x Physics is Driven by the Gluon

... knowledge comes mainly from inclusive NC HERA data

Final HERA Picture of Proton (HERAPDF2.0)

- Sea quarks well known down to x=10⁻⁴
- ~2% precision on gluon for $10^{-3} < x < 10^{-1}$
- Gluon uncertainty explodes between $x=10^{-3}$ and $x=10^{-4}$
- Gluon itself is rising in a seemingly non-sustainable way ...

The "Pathological" Gluon

- Fast growth of low x gluon appears unsustainable \rightarrow new low x gluon-driven dynamics?

Some evidence for deviations from (NNLO) DGLAP at lowest Q² in Final HERA-2 Combined PDF Paper:

"some tension in fit between low & medium Q² data... not attributable to particular x region (though there is a kinematic correlation)" ⁵

New Low x effects at HERA?

Energy effects? Including NLL ln(1/x) (BFKL) resummation in fits improves χ² and describes difficult low x, low Q² region (also improves F_L)

Density effects?

→ Non-linear gluon
 recombination (gg→g)?
 ... `Saturation' models
 successful in describing
 HERA data down to
 lowest x and Q² values

n 1/×

Q² < 1 GeV² data → Best description with Dipole Model, including saturation

Q² < 1 GeV² data → Best description with Dipole Model, including saturation

 $Q_s^2 \sim 1 \text{ GeV}^2$ at HERA \rightarrow Most of the relevant data are at non-perturbative Q^2 values \rightarrow quarks and gluons unreliable degrees of freedom ⁸

Assuming collinear factorisation and a full understanding of low x dynamics ... 9

LHC v HERA at low x

- LHC comparisons with PDFs based purely on DGLAP Q^2 evolution from HERA may reveal novel low x effects

- Converging solutions after DGLAP evolution maybe misleading
- Motivation to measure LHC low x processes and compare with theory based on DGLAP (as well as including in DGLAP fits) 10

- Asymmetric configurations are essential \rightarrow forward physics

Constraining Low x PDFs with LHC Data

Observables included in global fits that constrain low x ...

- Electroweak gauge bosons (and Drell Yan) \rightarrow quarks
- Jet production \rightarrow gluons
 - ... the more forward, the better! 12

Gluon-sensitive, though even at low(ish) p_T , $qg \rightarrow qg$ is larger than $gg \rightarrow gg$

- Recent availability of NNLO calculations increases interest
- Remarkable kinematic range, but high p_T \rightarrow not really a low x observable
- Low p_T region limited experimentally by jet energy scale uncertainty and non-perturbative corrections to the jets

PDF Constraints from CMS QCD ANALYSIS

- CMS 13 TeV Double-differential inclusive jets
- NC and CC cross sections from HERA

Inclusive jets have substantial (sometimes surprising) impact on gluon precision at all x relative to CT14 PDFs (which already used previous LHC data).

Singlet quark precision also improves

ATLAS 'Global' Fit (ATLASpdf21)

Data set	\sqrt{s} [TeV]	Luminosity [fb ⁻¹]
Inclusive $W, Z/\gamma^*$ [9]	7	4.6
Inclusive Z/γ^* [13]	8	20.2
Inclusive W [12]	8	20.2
$W^{\pm} + jets [23]$	8	20.2
Z + jets [24]	8	20.2
$t\bar{t}$ [25, 26]	8	20.2
<i>tt</i> [15]	13	36
Inclusive isolated γ [14]	8,13	20.2, 3.2
Inclusive jets [16–18]	7, 8, 13	4.5, 20.2, 3.2

Including quark and gluon-sensitive observables and the correlations between them

[EPJ C82 (2022) 438]

Impact of Different ATLAS **Data Sets**

- W and Z data strongly constrain quark
- Also some (indirect) impact on the gluon, including low x

- Jet and top data primarily reduce gluon uncertainty at large x

Favourable LHCb Kinematics for Low x Physics

4.5

- "Fixed target-like" forward instrumentation $(2 < \eta < 4.5) \rightarrow$ probes asymmetric x values ... to $x \sim 10^{-5}$ in perturbative domain ... also genuine fixed target (SMOG)

- e.g. inclusive Z production challenging theory (shape of NLO FEWZ) - Also W, top, Drell Yan ...

More LHCb Data: Double Ratios: W, Z, 7-8 TeV

- Data have an impact (shifts in central values, reductions in uncertainties)

... BUT mostly at large x

Drell-Yan Below Z Pole: ATLAS

- Lowest x direct constraints come from DY $(q\bar{q} \rightarrow l^+l^-)$ at low $m_{ll} \rightarrow eg$ ATLAS dedicated sample down to $m_{ll} = 12$ GeV
- Significant improvement in data description when NLO \rightarrow NNLO
- MSTW2008 PDFs adequate to describe

Drell Yan at very low masses: LHCb

- Data extend to $m_{ll} = 5$ GeV at forward rapidities!

- Preliminary data look compatible with previous generations of PDF sets (NLO comparisons)

[CONF note 2012]

LHC Impact on Global Fits according to NNPDF

- LHC has contributed at all x, but the most significant impact is at large x
- Discrepancies between low x gluon in different global fits

- Available data not expected to change fundamentally in the future $_{21}$ - Very different from nuclear PDFs \rightarrow LHC pA transformational

Dedicated low-x observables in LHC Physics

Strongly interacting colour-singlet exchanges discussed in diffractive sessions tomorrow:

- Ultra-peripheral collisions
- Diffractive dissociation
- Central inclusive production
- Central exclusive production

Other topics

- Azimuth decorrelations between jets
- Gaps between jets

jet GAP jet

22

LHC Searches for BFKL Dynamics: Jet-gap-jet events

- Gaps between jets are a classic signature for BFKL dynamics

- Complicated by rapidity gap survival probability and pile-up

- Broad agreement with BFKL models

Low x Prospects at Future ep Colliders

PDFs in ep at the Electron-Ion Collider

Due to lower \sqrt{s} , EIC doesn't extend beyond HERA x range for direct constraints in ep

Improved precision and constraints at high x / intermediate Q² lead to new level of precision at high x for 'DIS-only' fits

> Biggest impact is on up quarks

Low x in ep at the Electron-Ion Collider

0.15**EIC Data Region** $x \Delta q$ 0.100.05 $Q^2 = 10 \, \text{GeV}^2$ 0.00DSSV 14 +ATHENA DIS $\sqrt{s} = 45 \,\text{GeV}$ +ATHENA DIS $\sqrt{s} = 45 \& 29 \text{ GeV}$ -0.05+ATHENA DIS $\sqrt{s} = 45 \& 63 \,\text{GeV}$ +ATHENA DIS $\sqrt{s} = 45 \& 105 \text{ GeV}$ +ATHENA DIS $\sqrt{s} = 45 \& 140 \text{ GeV}$ -0.10 10^{-3} 10^{-4} 10^{-2} 10^{-1} 10^{-5} x

Indirect low x constraints via sum rules ... eg valence quarks at low x (where they are small)

Sensitivity through diffractive channels (~ gluon squared)

Revolutionary impact on spin / helicity distributions at low x, especially gluon.

Low x Physics in eA at EIC

Understanding dense systems of gluons is one of the three pillars of EIC science

- Nuclei enhance the density of partons (" $A^{1/3}$ " factor) \rightarrow low-x effects become visible at larger x values than in the proton case

- No previous eA collider data \rightarrow PDFs currently poorly constrained in DIS below x~10⁻²

- Picture changed by pA At LHC, but with theory complications

- EIC will have very large impact on eA phase space, potentially extending into region of saturation in perturbative domain

Impact on Nuclear PDFs: Gluon

EIC eA data limit

EPPS21 data limit

Future ep Options at CERN

LHeC

50 GeV electrons on LHC p, A beams

FCC-eh

50 GeV(+) electrons on FCC hadrons

Extending energy frontier ...

 \rightarrow >2 orders of magnitude extension to lower x at for ep at FCC-eh \rightarrow Revolutionary impact on low x PDFs

Renewed mandate, working group structure and coordination (J d'Honft) → Open `Kick-off' meeting October 31

Potential of LHeC & FCC-eh to establish BFKL

- Extrapolated F_2 and F_L predictions in LHeC and FCC-eh regime based on NNPDF fits to HERA data with and without NLL 1/x resummation

1.3

1.2

1.1

1.0

0.9

0.8

0.7 24

 10^{-7}

 10^{-6}

 10^{-5}

10-

 10^{-3}

 10^{-2}

 10^{-1}

100

 $g(x, Q^2) / g(x, Q^2)$ [ref]

YYYYY NNLO+NLLx HERA only, global

////// NNLO HERA+LHeC+FCC-eh, DIS-only

NNLO+NLLx HERA+LHeC+FCC-eh, DIS-onh

- Huge error bands due to lack of current constraints at x < 10⁻⁴
 Data precision will
- distinguish and
- ¹⁰⁻³ reveal new dynamics
- Extracted PDFs including LHeC and FCC-eh pseudodata highly sensitive to inclusion of NLL 1/x resummation in simulated data

Can Parton Saturation be Established in ep @ LHeC?

- → Create LHeC pseudodata including saturation by extrapolating (DGLAP-improved) GBW model based on fit to HERA data:
- \rightarrow try to fit using pure NNLO DGLAP machinery
- ... Cannot absorb the non-linear effects into the initial conditions

If this is not a smoking gun: unambiguous observation of saturation will be based on tension between observables: e.g. $F_2 v F_L$ in ep, F_2 in ep v eA, diffractive channels 31

Summary

- HERA leaves many questions about low x physics
 - Implications of fast-rising gluon?
 - Novel dynamics?... Resummation?... Saturation?...
- Some progress at the LHC
 - Mainstream LHC ep data have much more impact on high x than low x
 - Some promising low x channels maybe under-exploited?
- Future electron-proton (& ion) colliders promise transformation
 - EIC in nuclear mode will probe saturation region
 - Ultra-low x physics could be opened at LHeC / FCC-eh

