Complete NLO Single-Inclusive π^0 Production in Forward pA Collisions

Yossathorn (Josh) Tawabutr

University of Jyväskylä, Department of Physics, Centre of Excellence in Quark Matter

In collaboration with:

Heikki Mäntysaari

WILHELM UND ELSE HERAEUS-STIFTUNG

Based on: 2310.06640

Motivation

• Single-inclusive particle production provides a way to probe heavy nuclei at small Bjorken *x*.

Hard factor

- Momentum space
- LO: Fourier transform
 - of $S_{a,c}$ w.r.t. k_{\perp} .
- NLO: One emission of hard "primary parton"

Soft factor

- Mixed space: (k^+, x_{\perp}) .
- Shockwave picture
- Interaction *a* + A corresponds to a color rotation of the forward parton line, *a*: "Wilson line"
- $|\text{Amplitude}|^2: \left\langle \operatorname{tr} \left[V_{\underline{x}} V_{\underline{y}}^{\dagger} \right] \right\rangle$
 - "Dipole amplitude"
 - Same d.o.f. as BK equation.

Hard factor

- Momentum space
- LO: Fourier transform of $S_{a,c}$ w.r.t. k_{\perp} .
- NLO: One emission of hard "primary parton"

Soft factor

- Mixed space: (k^+, x_{\perp}) .
- Shockwave picture
- Interaction *a* + A corresponds to a color rotation of the forward parton line, *a*: "Wilson line"
- $|\text{Amplitude}|^2: \left\langle \operatorname{tr} \left[V_{\underline{x}} V_{\underline{y}}^{\dagger} \right] \right\rangle$
 - "Dipole amplitude"
 - Same d.o.f. as BK equation.

qq channel:

Hard factor

- Momentum space
- LO: Fourier transform of $S_{a,c}$ w.r.t. k_{\perp} .
- NLO: One emission of hard "primary parton"

Soft factor

- Mixed space: (k^+, x_{\perp}) .
- Shockwave picture
- Interaction *a* + A corresponds to a color rotation of the forward parton line, *a*: "Wilson line"
- $|\text{Amplitude}|^2: \left\langle \operatorname{tr} \left[V_{\underline{x}} V_{\underline{y}}^{\dagger} \right] \right\rangle$
 - "Dipole amplitude"
 - Same d.o.f. as BK equation.

qg channel:

Hard factor

- Momentum space
- LO: Fourier transform of $S_{a,c}$ w.r.t. k_{\perp} .
- NLO: One emission of hard "primary parton"

Soft factor

- Mixed space: (k^+, x_\perp) .
- Shockwave picture
- Interaction *a* + A corresponds to a color rotation of the forward parton line, *a*: "Wilson line"
- $|\text{Amplitude}|^2: \left\langle \operatorname{tr} \left[V_{\underline{x}} V_{\underline{y}}^{\dagger} \right] \right\rangle$
 - "Dipole amplitude"
 - Same d.o.f. as BK equation.

Hard factor

- Momentum space
- LO: Fourier transform of S_{ac} w.r.t. k_{\perp} .
- NLO: One emission of hard "primary parton"

Soft factor

- Mixed space: (k^+, x_{\perp}) .
- Shockwave picture
- Interaction *a* + A corresponds to a color rotation of the forward parton line, *a*: "Wilson line"
- $|\text{Amplitude}|^2: \left\langle \operatorname{tr} \left[V_{\underline{x}} V_{\underline{y}}^{\dagger} \right] \right\rangle$
 - "Dipole amplitude"
 - Same d.o.f. as BK equation.

Dipole Amplitude

• Initial condition generalizes MV model.

Soft factor

- Interaction *a* + A corresponds to a color rotation of the forward parton line, *a*: "Wilson line"
- $|\text{Amplitude}|^2: \left\langle \operatorname{tr} \left[V_{\underline{x}} V_{\underline{y}}^{\dagger} \right] \right\rangle$
 - "Dipole amplitude"
 - Same d.o.f. as BK equation.

• pp: $\exp\left[-\frac{(r_{\perp}^{2}Q_{s,0}^{2})^{\gamma}}{4}\ln\left(\frac{1}{r_{\perp}\Lambda_{\rm QCD}}+e\right)\right]$ Using optical Glauber model to generalize pp to pA. • pA: $\exp\left[-\frac{\sigma_{0}}{2}AT_{A}(\boldsymbol{b}_{\perp})\frac{(r_{\perp}^{2}Q_{s,0}^{2})^{\gamma}}{4}\ln\left(\frac{1}{r_{\perp}\Lambda_{\rm QCD}}+e\right)\right]$ Modify the initial saturation scale for pp to account for the impact-parameter profile of A [Lappi, Mäntysaari, 1309.6963].

- High-energy (small-*x*) evolution: Balitsky-Kovchegov (BK) equation
 - For the first time, we include NLO corrections to BK (with running coupling).
 - Parameters γ , $Q_{s,0}$ and σ_0 taken from the fit to HERA data [Beuf et al, 2007.01645]

Neutral Pion Spectra (p+Pb)

<u>Kinematics</u>: y = 3 and $\sqrt{s} = 8.16$ TeV. LHCb: $y \in [2.5, 3.5]$ [LHCb, 2204.10608].

- Both: normalization mismatch.
- Balitsky + smallest dipole: falls more steeply than LHCb results.
- Each r.c. has different γ , $Q_{s,0}$ and σ_0 in the IC, such that DIS structure functions come out identical.
- Forward pA collisions put additional constraints on NLO BK parameters.

Nuclear Modification Factor

<u>Kinematics</u>: y = 3 and $\sqrt{s} = 8.16$ TeV.

LHCb: $y \in [2.5, 3.5]$ [LHCb, 2204.10608].

$$R_{p\rm Pb} = \frac{\mathrm{d}\sigma^{pA \to h+X}}{A\,\mathrm{d}\sigma^{pp \to h+X}}$$

Similarly for both cases,

- Weak nuclear suppression at low p_{\perp} .
- $R_{pPb} \rightarrow 1$ at moderate to high p_{\perp} , overshooting LHCb data.
- Resulted from small σ_0 from the DIS fit, which is mostly sensitive to $\sigma_0 Q_{s,0}^2$.

Rapidity Dependence

<u>Kinematics</u>: \sqrt{s} = 8.16 TeV.

- Spectra suppressed as *y* increases, since PDFs vanish as $x_p \rightarrow 1$.
- Stronger low-p₁ nuclear suppression at larger y because nuclear saturation scale increases.
- Still see $R_{pPb} \rightarrow 1$ at high p_{\perp} for all y. Qualitatively consistent with the charged hadron data from LHCb [LHCb, 2108.13115]. Here, we get a slightly weaker y dependence.

Conclusion and Outlook

- For the first time, we compute the forward single inclusive hadron production with NLO hard factor and NLO dipole. The latter employs parameters fitted to HERA structure function data.
- NLO corrections have significant effects on π^0 spectra and R_{nPb} .
- The spectra qualitatively agree with the LHCb π^0 data, while R_{pPb} overestimates LHCb data and approaches 1 at high p_{\perp} .
- This calls for a comprehensive global analysis of NLO BK evolution, including both DIS and forward pA collision data.
- Spectra and R_{pPb} are suppressed at high rapidities, in qualitative agreement with LHCb charged hadron data.

Backup Slides

Recap: Cronin Peak in LHCb Kinematics

Work	Dipole BK evolution	Impact factor	Cronin peak
[Kharzeev et al, 0307037] [Albacete et al, 0307179]	Initial condition	LO	Yes
	LO	LO	No
[Shi, Wang, Wei, Xiao, 2112.06975]	LO with running coupling	NLO	No
This work	NLO	LO	Yes
	NLO	NLO	Νο