Forward Physics and QCD at the LHC and EIC, 798. WE-Heraeus-Seminar, 23-27 October, 2023, Physikzentrum, Bad Honnef, Germany

We are pleased to inform you that the 2022 edition of the QCD@LHC conference will take place at IJCLab Orsay, France in the campus of Paris-Saclay University between 28th November and 2nd December 2022. This will be an in-person event only and the registration and call for abstracts will open on 3rd

Outline:

- UPCs as real-photon probes of nucleus and proton structure in QCD
- Coherent exclusive J/ψ photoproduction in Pb-Pb UPCs at the LHC: leading-twist nuclear shadowing at small x, higher Fock states in dipole picture
- Exclusive J/ψ photoproduction in p-p UPCs at the LHC: tamed collinear factorization and small-x gluons in proton
- Summary and Outlook

Ultraperipheral collisions as photon-hadron collider

- Ultraperipheral collisions (UPCs): ions pass each other at large impact parameters $b \sim O(50 \text{ fm}) >> R_A + R_B \rightarrow$ strong interactions suppressed \rightarrow interaction via quasireal photons in Weizsäcker-Williams equivalent photon approximation, Budnev, Ginzburg, Meledin, Serbo, Phys. Rept. 15 (1975) 181
- Photon flux scales as Z² and photon energy as $\gamma_{L} \rightarrow \gamma\gamma$, γp and γA interactions at high energies.
- Pioneering studies of UPCs at RHIC, recent impetus at the LHC $\rightarrow W_{\gamma\rho}$ =5 TeV, $W_{\gamma A}$ =700 GeV/A, $W_{\gamma\gamma}$ =4.2 TeV.

Figure credit: A. Stahl, LPCC CERN Seminar, 6.12.2022

• In UPCs, real photons are used as probes to study open questions of nucleus and proton structure (e.g., small-x PDFs) and strong interaction dynamics in QCD as well as to search for new physics.

Bertulani, Klein, Nystrand, Ann. Rev. Nucl. Part. Sci. 55 (2005) 271; Baltz et al, Phys. Rept. 458 (2008) 1; Contreras and Tapia-Takaki, Int. J. Mod. Phys. A 30 (2015) 1542012; Klein and Mäntysaari, Nature Rev. Phys. 1 (2019) no.11, 662; Snowmass Lol, Klein et al, arXiv:2009.03838

Coherent and incoherent scattering in UPCs

• UPCs have very distinct experimental signatures \rightarrow two leptons from J/ ψ decay (two pions from ρ decay) in otherwise empty detector.

• The underlying photon-nucleus scattering can be coherent (target stays intact) and incoherent (target breaks up) \rightarrow distinguished by measuring p_T of lepton pair (J/ ψ) and comparing to STARlight Monte Carlo, Klein, Nystrand, Seger, Gorbunov, Butterworth, Comput. Phys. Commun. 212 (2017) 258

Figure credit: Aaij et al [LHCb], JHEP 07 (2022) 117

• Both coherent and incoherent scattering can be accompanied by mutual e.m. excitation of colliding ions followed by forward neutron emission, Pshenichnov et al, PRC 64 (2001) 024903; Baltz, Klein, Nystrand, PRL 89 (2002) 012301 \rightarrow UPCs in different channels (0n0n, 0nXn, XnXn) separate W[±] terms \rightarrow probe lower X, Guzey, Strikman, Zhalov, EPJC 74 (2014) 7, 2942

lons de-excite by emitting neutrons detected in ZDCs

Exclusive J/ ψ photoproduction

• Most thoroughly studied process in UPCs.

• In UPCs, both ions can be a source of photons and a target \rightarrow cross section is a sum of two terms for high W⁺ (high photon momentum k⁺) and low W⁻ (low photon momentum k⁻):

$$\begin{aligned} \frac{d\sigma^{AB \to AJ/\psi B}}{dy} &= \left[k \frac{dN_{\gamma/B}}{dk} \sigma^{\gamma A \to J/\psi A} \right]_{k=k^+} + \left[k \frac{dN_{\gamma/A}}{dk} \sigma^{\gamma B \to J/\psi B} \right]_{k=k^-} \end{aligned}$$
Photon flux from QED + Glauber-model suppression of soft strong interactions for b < 2R_A (rapidity gap survival probability) Photoproduction cross section
$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z} \to k^{\pm} = \frac{M_{J/\psi}}{2} e^{\pm y}$$

$$kdN_{\gamma/A}^{\text{pl}}(k) = \frac{2Z^2 \alpha_{\text{e.m.}}}{\pi} [\zeta K_0(\zeta) K_1(\zeta) + \frac{\zeta^2}{2} (K_0^2(\zeta) - K_1^2(\zeta)] \qquad W^{\pm} = \sqrt{(k^{\pm} + E_A)^2}$$

• Ambiguity in relating J/ ψ rapidity y to photon momentum k \rightarrow ambiguity in momentum fraction $x_A = (M_{J/\psi})^2/W^2 \rightarrow$ difficult to probe small x_A since $N_{\gamma}(k^+) \ll N_{\gamma}(k^-)$

Exclusive J/ ψ photoproduction at LO

• Hard scale by charm quark mass $m_c \rightarrow$ in leading $\ln(Q^2) \ln(1/x)$ double logarithmic approximation of perturbative pQCD and static approximation for J/ ψ vertex, Ryskin, Z. Phys. C57 (1993) 89

• Application to nuclear targets:

$$\sigma^{\gamma A \to J/\psi A}(W) = \frac{d\sigma^{\gamma p \to J/\psi p}(W, t = 0)}{dt} \begin{bmatrix} xg_A(x, Q_{\text{eff}}^2) \\ Axg_p(x, Q_{\text{eff}}^2) \end{bmatrix}^2 \int_{|t_{\min}|}^{\infty} dt |F_A(-t)|^2$$
Nuclear form factor
From fits to
HERA data
Global QCD analyses of
nPDFs, T. Jezo talk on Monday
Dynamical models of
nuclear shadowing

Leading twist model or nuclear shadowing

 Combination of Gribov-Glauber theory with QCD factorization theorems for inclusive and diffractive DIS → prediction for small-x nPDFs at input scale Q₀, Frankfurt, Strikman, EPJ A5 (1999) 293; Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255

Leading twist model of nuclear shadowing (2)

- Essential input: universal, leading twist (LT) diffractive PDFs of proton, Collins, PRD 57, 3051 (1998); PRD 61, 019902 (2000)
- Extracted from HERA data on diffraction in ep DIS, Aktas et al [H1], EPJ C48, 715 (2006), EPJC 48, 749 (2006); Chekanov et al [ZEUS], NPB 831, 1 (2010)

10⁻²

Х

10⁻¹

10⁻³

 Interaction with 2 nucleons modelindependently in terms of diffractive (Pomeron) PDFs:

60

50

40

30

20

10

0

10⁻⁵

auarks

 10^{-4}

σ (mb)

$$\sigma_2^j(x, Q^2) = \frac{16\pi}{(1+\eta^2)xf_{j/N}(x, Q^2)} \int_x^{0.1} dx_{\mathbb{P}}\beta f_j^{D(4)}(\beta, Q^2, x_{\mathbb{P}}, t_{\min}).$$

p

 $(Q^2$

Spread in $\sigma_{soft} \rightarrow$

predictions

uncertainty of LTA

• Interaction with N \geq 3 nucleons modeled using hadronic fluctuations of photon

60

50

40

30

20

10

0

10⁻⁵

gluons

10⁻⁴

10⁻³

10⁻²

Х

10⁻¹

(qm)

ь

• LT in the name comes from HERA analysis, but higher twist effects in diffraction at low Q₀ could be significant, Motyka, Sadzikowski, Slominski, PRD 86 (2012) 111501; Maktoubian, Mehraban, Khanpour, Goharipour, PRD 100 (2019) 054020.

LTA predictions for nPDFs

• HERA analysis: perturbative Pomeron is made mostly of gluons \rightarrow LTA model naturally predicts large gluon nuclear shadowing, Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255

- Alternative, complementary point of view: shadowing is mixture of leading and higher twist (HT) effects in dipole picture with saturation, Kowalski, Lappi, Venugopalan, PRL 100 (2008) 022303, or a purely HT effect, Qiu, Vitev, PRL 93 (2004) 262301.
- •Electron-Ion Collider has potential to discriminate models of NS due to:
- wide x-Q² coverage
- measurements of the longitudinal structure function $F_{L}^{A}(x,Q^{2})$ sensitive to gluons
- measurements of diffraction in eA DIS

LTA shadowing vs. Run 2 LHC data

• Left: rapidity-differential cross section of coherent J/ ψ photoproduction in Pb-Pb UPCs at 5.02 TeV, Acharya *et al.* [ALICE], EPJC 81 (2021) no.8, 712 and PLB 798 (2019), 134926; Aaij *et al.* [LHCb], JHEP 06 (2023), 146; Tumasyan *et al.* [CMS], arXiv:2303.16984 [nucl-ex]

• Right: cross section of J/ ψ photoproduction on Pb as function of W from UPCs

with forward neutrons, [ALICE], arXiv:2305.19060 [nucl-ex]; Tumasyan *et al.* [CMS], arXiv:2303.16984 [nucl-ex]; O. Villalobos Baillie talk on Tuesday

Nuclear suppression factor

• Nuclear suppression factor $S_{Pb}(x)$ from UPC data \rightarrow direct comparison to $R_g(x)=g_A(x)/g_p(x)$, Guzey, Kryshen, Strikman, Zhalov, PLB 726 (2013) 290; Guzey, Zhalov, JHEP 1310 (2013) 207

$$S_{Pb}(W) = \left[\frac{\sigma^{\gamma A \to J/\psi A}(W)}{\sigma_{\mathrm{IA}}^{\gamma A \to J/\psi A}(W)}\right]^{1/2} = \frac{g_A(x,\mu^2)}{Ag_p(x,\mu^2)} \quad \sigma_{\mathrm{IA}}^{\gamma A \to J/\psi A}(W) = \frac{d\sigma^{\gamma p \to J/\psi p}(W,t=0)}{dt} \int_{|t_{\min}|}^{\infty} dt |F_A(-t)|^2$$

10

1 0

Exclusive J/ ψ photoproduction in NLO pQCD

- Collinear factorization for hard exclusive processes, Collins, Frankfurt, Strikman, PRD 56 (1997) 2982
- $\gamma A \rightarrow J/\psi A$ amplitude in terms of generalized parton distribution functions (GPDs), Ji, PRD 55 (1997) 7114; Radyushkin PRD 56 (1997) 5524; Diehl, Phys. Rept. 388 (2003) 41
- To next-to-leading order (NLO) of perturbative QCD, Ivanov, Schafer, Szymanowski, Krasnikov, EPJ C 34 (2004) 297, 75 (2015) 75 (Erratum); Jones, Martin, Ryskin, Teubner, J. Phys. G: Nucl. Part. Phys. 43 (2016) 035002

• To leading order (LO), only gluons; both quarks and gluons at NLO.

function

 J/ψ leptonic decay

Exclusive J/ ψ photoproduction in NLO pQCD (2)

• In the limit of high W corresponding to small $\xi = (1/2)(M_{J/\psi})^2/W^2 \ll 1$

$$\begin{split} \mathcal{M}^{\gamma A \to J/\psi A} &\propto i \sqrt{\langle O_1 \rangle_{J/\psi}} \Big[F_A^g(\xi, \xi, t, \mu_F) + \frac{\alpha_s N_c}{\pi} \ln\left(\frac{m_c^2}{\mu_F^2}\right) \int_{\xi}^1 \frac{dx}{x} F^g(x, \xi, t) \\ &+ \frac{\alpha_s C_F}{\pi} \ln\left(\frac{m_c^2}{\mu_F^2}\right) \int_{\xi}^1 dx (F^{q,S}(x, \xi, t) - F^{q,S}(-x, \xi, t)) \Big] & \text{+less singular and} \\ &\text{non-log terms} \end{split}$$

 \rightarrow helps to qualitatively understand the features of our numerical calculations.

• GPDs are hybrid distributions interpolating between usual PDFs and form factors \rightarrow depend on momentum fractions x and ξ and momentum transfer t.

• Connection between GPDs is necessarily model-dependent. However, at small ξ , Q² evolution washes out information on input GPDs \rightarrow GPDs in terms of PDFs, Shuvaev, Golec-Biernat, Martin, Ryskin, PRD 60 (1999) 014015; Dutrieux, Winn, Bertone, PRD 107 (2023) 11, 114019

$$F_A^g(x,\xi,t,\mu_F) = xg_A(x,\mu_F)F_A(t)$$

Nuclear PDFs: EPPS16, nCTEQ15, nNPDF2.0 + update with EPPS21, nCTEQ15WZSIH, nNNPDF3.0

Nucleus (Woods-Saxon) form factor

NLO pQCD predictions for J/ψ photoproduction in Pb-Pb UPCs at LHC

• Scale dependence for $m_c \le \mu \le 2m_c$ is expectedly very strong \rightarrow consequence of $\ln(m_c^2/\mu^2)\ln(1/\xi)$ terms in NLO coefficient functions.

• Can find an "optimal scale" μ =2.39 GeV (EPPS21) giving simultaneously fair description of Run 1&2 UPC data \rightarrow note that γ +p \rightarrow J/ ψ +p proton data is somewhat overestimated.

• Uncertainties due nPDFs are quite significant \rightarrow opportunity to reduce them using these data.

Eskola, Flett, Guzey, Löytäinen, Paukkunen, PRC 106 (2022) 3, 035202 and PRC 107 (2023) 4, 044912

<u>Shown data</u>: Acharya et al [ALICE], EPJC 81 (2021) no.8, 712 and PLB 798 (2019) 134926; Aaij et al [LHCb], JHEP 07 (2022) 117

Dominance of quark contribution in NLO pQCD

• At the face value, this totally changes the interpretation of data on coherent J/ψ photoproduction in heavy-ion UPCs as a probe of small-x nuclear gluons.

• Perturbative stability of NLO pQCD improves for scaled ratio of oxygen and lead UPC cross secs:

$$\left(\frac{208Z_{\rm Pb}}{16Z_{\rm O}}\right)^2 \frac{d\sigma({\rm O}+{\rm O}\rightarrow{\rm O}+J/\psi+{\rm O})/dy}{d\sigma({\rm Pb}+{\rm Pb}\rightarrow{\rm Pb}+J/\psi+{\rm Pb})/dy}$$

Eskola, Flett, Guzey, Löytäinen, Paukkunen, PRC 107 (2023) 4, 044912

Exclusive J/ ψ photoproduction in dipole picture

- Space-time picture of strong interaction at high energies in target rest frame \rightarrow photon is a superposition of long-lived $q\bar{q}$, $q\bar{q}g$,... dipoles.
- Dipoles successively, elastically scatter on target nucleons \rightarrow high-energy factorization for $\gamma + A \rightarrow J/\psi + A$ amplitude:

• This implementation over-predicts the data at y=0 since nuclear shadowing due to rescattering of small dipoles with $< r_T > \sim 0.3$ fm is too weak.

pole picture: role of qqg dipoles

²⁰ Small ⁴≪r_T > ⁵⁰q q̄ dipoles provide higher-twist contribution to γ+A→J/ψ+A as well W [GeV] as to other nuclear observables, e.g. longitudinal structure function F_L^A(x,Q²),

Frankfurt, Guzey, McDermott, Strikman, JHEP 02 (2002) 027

• Need to include higher $q\bar{q}g$ Fock states \rightarrow modeling of 3-body "dipole" cross section and wave function.

• Includes elastic and inelastic nuclear shadowing \rightarrow good description of data.

Dipole picture: saturation in nuclei

• Instead of Glauber-type dipole-nucleus scattering \rightarrow nuclear geometry in initial condition for Balitsky-Kovchegov equation \rightarrow saturation in nuclei, but not necessarily in nucleons.

 $\frac{\sigma_{\mathrm{dip}}^{A}(\mathbf{r}_{T}, \mathbf{b}_{T})}{d^{2}\mathbf{b}_{T}} = 2\mathcal{N}_{\mathrm{BK}}(\mathbf{r}_{T}, \mathbf{b}_{T}, x)$

• Should be taken with grain of salt \rightarrow predictions strongly depend on models for the dipole cross section and J/ ψ wave function.

Coherent J/ ψ photoproduction in Pb-Pb UPCs

Acharya et al [ALICE], EPJC 81 (2021) no.8, 712

• None of the approaches describe the data in the entire range of J/ψ rapidity y.

- Suppression at $y=0 \rightarrow$ strong leading-twist gluon shadowing at small x, importance of qq̄g dipoles, or a sign of saturation in nuclei.
- Behavior at large |y| and $x_A > 0.01 \rightarrow$ all approaches close to the border of applicability \rightarrow require refinements: e.g., earlier onset of antishadowing,...

Tamed collinear factorization

• Stability of perturbation series for exclusive J/ψ photoproduction in NLO pQCD can be improved in 2 steps:

- Choose factorization scale $\mu_F = \mu_c$ to transfer $\ln(m_c^2/\mu_F^2) \ln(1/\xi)$ terms of NLO coefficient function to LO GPDs \rightarrow resummation in spirit of DGLAP \rightarrow residual μ_f dependence is weak, Jones, Martin, Ryskin, Teubner, J. Phys. G 43 (3) (2016) 035002

$$A^{(0)}(\mu_f) + A^{(1)}(\mu_f) = C^{(0)} \otimes F(\mu_F) + \alpha_s C^{(1)}_{\text{rem}}(\mu_F) \otimes F(\mu_f)$$

- Subtraction of $I_T < Q_0 \sim m_C$ contribution from NLO coefficient functions to avoid double counting (included in LO gluons) $\rightarrow Q_0$ subtraction method, Jones, Martin, Ryskin, Teubner, EPJC 76 (2016) 633

• Q₀-subtraction addresses $\mathcal{O}(Q_0^2/m_c^2)$ power suppressed terms \rightarrow numerically important for J/ ψ and much less important for DIS with $\mathcal{O}(Q_0^2/Q^2)$.

Tamed collinear factorization: gluons in proton

- Restores the gluon dominance and allows for sensible comparison to data.
- Tamed NLO pQCD predictions using existing proton PDFs vs. HERA and LHCb pp UPC data on γ +p \rightarrow J/ ψ +p, Flett, Jones, Martin, Ryskin, Teubner, PRD 101 (2020) 9, 094011
- Predictions are stable, but description of LHCb data is poor.
- Extraction of gluon PDF for x< 10⁻³ using global analysis of data on γ +p \rightarrow J/ ψ +p, Flett, Martin, Ryskin, Teubner, PRD 102 (2020) 114021

$$\begin{aligned} xg(x,\mu_0^2) &= C xg^{\text{global}}(x,\mu_0^2) + (1-C) xg^{\text{new}}(x,\mu_0^2) \\ xg^{\text{new}}(x,\mu_0^2) &= nN_0 (1-x) x^{-\lambda} \end{aligned}$$

• Constraints on $xg_p(x,\mu)$ for $3 \times 10^{-6} < x < 10^{-3}$, no signs of saturation.

Shown LHCb data: Aaij et al [LHCb], J. Phys. G41 (2014) 055002 and JHEP 1810 (2018) 167.

Summary and Outlook

• There is continuing interest in UPCs at the LHC and RHIC to obtain new constraints on proton and nucleus PDFs and on the small-x dynamics of QCD.

- The data challenges both collinear factorization and dipole model frameworks.
- J/ ψ photoproduction in pp UPCs constrains $g_p(x,Q^2)$ down to $x\sim 10^{-6}$.
- Extraction of nuclear PDFs is feasible using ratios of AA/pp UPCs cross sections, where strong scale dependence, modeling of GPDs, and relativistic corrections partially cancel.
- The outstanding challenges are the consistent treatment of J/psi vertex in NRQCD (q \bar{q} and q \bar{q} g distribution amplitudes) and taming of small- ξ behavior of NLO coefficient functions.
- I didn't have time to cover t-dependence and incoherent J/ ψ photoproduction in Pb-Pb UPCs \rightarrow complement. constraints on shadowing in LT and dipole pictures.